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To Stan Philipp, who taught me real analysis.
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learned.





Preface to the Second Edition

The book Real Analysis and Foundations, first published in 1991, is
unique in several ways. It was the first book to attempt a bridge between
the rather hard-edged classical books in the subject-like Walter Rudin's
Principles of Mathematical Analysis-and the softer and less rigorousX
books of today. This book combines authority, rigor, and readability
in a manner that makes the subject accessible to students while still
teaching them the strict discourse of mathematics.

Real Analysis and Foundations was a timely book, and it has been
a successful book. It is used not only in mathematics departments but
also in economics and physics and engineering and finance programs.
The book's wide acceptance speaks for itself. Since the volume has been
in print for thirteen years, it seems that a new edition is long overdue.

Like much of classical mathematics, real analysis is a subject that is
immutable. It has not changed appreciably for 150 years, and it is not
about to change. But there are new ideas that build on the old ones, and
the presentation can evolve as well. In this new edition, we propose to
build on the basic ideas of Fourier analysis (Chapter 12) and to develop
some of the new ideas about wavelets (Chapter 15). We will indicate
applications of wavelets to the theory of signal processing.

We can also augment the Fourier-analytic theory with applications
to ordinary differential equations, and even to some partial differential
equations. Elliptic boundary value problems on the disc, and their in-
terpretation in terms of steady-state heat flow, are a natural crucible for
the applications of real analysis.

As part of our treatment of differential equations we present the
method of power series, the method of characteristics, and the Picard
existence and uniqueness theorem. These are lovely pieces of mathemat-
ics, and they also allow us to show how fundamental ideas like uniform
convergence and power series are applied.

We will amplify the development of real analysis of several variables.
After all, the real world is three-dimensional and we must have the tools



of multi-variable analysis in order to attack the concrete engineering
problems that arise in higher dimensions. We will present the rudiments
of the Lebesgue integration theory, primarily as an invitation to further
study. We will also present the basics of differential forms and integra-
tion on surfaces. We will give a brief treatment of Stokes's theorem and
its variants.

The exercise sets are rich and robust. Each chapter has an extensive
and diverse collection of problems. Difficult or challenging exercises are
marked with a *.

Of course we have re-thought and developed all the exercise sets and
all the examples in the book. We have added more figures. We have
corrected the few errors that have arisen over the years, tightened up
the statements and proofs of the theorems, and provided end-of-section
appendices to help the student with review topics.

In sum, the second edition of Real Analysis and Foundations will
be a new book-even more lively and more vital than the popular first
edition. I am happy to express my gratitude to my editor Robert Stern.
who made this publishing experience a smooth and happy one. I look
forward to hearing remarks and criticisms from my readers, in hopes of
making future editions of this book more accurate and more useful.

- Steven G. Krantz
St. Louis, Missouri



Preface to the First Edition

Overview

The subject of real analysis, or "advanced calculus," has a cen-
tral position in undergraduate mathematics education. Yet because of
changes in the preparedness of students, and because of their early expo-
sure to calculus (and therefore lack of exposure to certain other topics)
in high school, this position has eroded. Students unfamiliar with the
value of rigorous, axiomatic mathematics are ill-prepared for a tradi-
tional course in mathematical analysis.

Thus there is a need for a book that simultaneously introduces stu-
dents to rigor, to the need for rigor, and to the subject of mathemati-
cal analysis. The correct approach, in my view, is not to omit impor-
tant classical topics like the Weierstrass Approximation theorem and the
Ascoli-Arzela theorem, but rather to find the simplest and most direct
path to each. While mathematics should be written "for the record" in
a deductive fashion, proceeding from axioms to special cases, this is not
how it is learned. Therefore (for example) I do treat metric spaces (a
topic that has lately been abandoned by many of the current crop of
analysis texts). I do so not at first but rather at the end of the book as
a method for unifying what has gone before. And I do treat Riemann-
Stieltjes integrals, but only after first doing Riemann integrals. I develop
real analysis gradually, beginning with treating sentential logic, set the-
ory, and constructing the integers.

The approach taken here results, in a technical sense, in some rep-
etition of ideas. But, again, this is how one learns. Every generation
of students comes to the university, and to mathematics, with its own
viewpoint and background. Thus I have found that the classic texts
from which we learned mathematical analysis are often no longer suit-
able, or appear to be inaccessible, to the present crop of students. It is
my hope that my text will be a suitable source for modern students to
learn mathematical analysis. Unlike other authors, I do not believe that



the subject has changed; therefore I have not altered the fundamental
content of the course. But the point of view of the audience has changed,
and I have written my book accordingly.

The current crop of real analysis texts might lead one to believe
that real analysis is simply a rehash of calculus. Nothing could be fur-
ther from the truth. But many of the texts written thirty years ago are
simply too dry and austere for today's audience. My purpose here is to
teach today's students the mathematics that I grew to love in a language
that speaks to them.

Prerequisites

A student with a standard preparation in lower division mathematics.-
calculus and differential equations-has adequate preparation for a course
based on this text. Many colleges and universities now have a "transi-
tions" course that helps students develop the necessary mathematical
maturity for an upper division course such as real analysis. I have taken
the extra precaution of providing a mini-transitions course in my Chap-
ters 1 and 2. Here I treat logic, basic set theory, methods of proof, and
constructions of the number systems. Along the way, students learn
about mathematical induction, equivalence classes, completeness, and
many other basic constructs. In the process of reading these chapters,
written in a rigorous but inviting fashion, the student should gain both
a taste and an appreciation for the use of rigor. While many instructors
will want to spend some class time with these two chapters, others will
make them assigned reading and begin the course proper with Chapter 3.

How to Build a Course from this Text

Chapters 3 through 7 present a first course in real analysis. I begin
with the simplest ideas-sequences of numbers-and proceed to series,
topology (on the real line only), limits and continuity of functions, and
differentiation of functions. The order of topics is similar to that in tradi-
tional books like Principles of Mathematical Analysis by Walter Rudin.
but the treatment is more gentle. There are many more examples, and
much more explanation. I do not short-change the really interesting
topics like compactness and connectedness. The exercise sets provide
plenty of drill, in addition to the more traditional "Prove this, Prove
that." If it is possible to obtain a simpler presentation by giving up
some generality, I always opt for simplicity.

Today many engineers and physicists are required to take a term of
real analysis. Chapters 3 through 7 are designed for that purpose. For
the more mathematically inclined, this first course serves as an intro-



duction to the more advanced topics treated in the second part of the
book.

In Chapter 8 1 give a rather traditional treatment of the integral.
First the Riemann integral is covered, then the Riemann-Stieltjes inte-
gral. I am careful to establish the latter integral as the natural setting
for the integration by parts theorem. I establish explicitly that series are
a special case of the Riemann-Stieltjes integral. Functions of bounded
variation are treated briefly and their utility in integration theory is
explained.

The usual material on sequences and series of functions in Chap-
ter 9 (including uniform convergence) is followed by a somewhat novel
chapter on "Special Functions". Here I give a rigorous treatment of the
elementary transcendental functions as well as an introduction to the
gamma function and its application to Stirling's formula. The chapter
concludes with an invitation to Fourier series.

I feel strongly, based in part on my own experience as a student,
that analysis of several variables is a tough nut the first time around.
In particular, college juniors and seniors are not (except perhaps at the
very best schools) ready for differential forms. Therefore my treatment
of functions of several variables in Chapter 11 is brief, it is only in 3,
and it excludes any reference to differential forms. The main interests
of this chapter, from the student's point of view, are (i) that derivatives
are best understood using linear algebra and matrices and (ii) that the
inverse function theorem and implicit function theorem are exciting new
ideas. There are many fine texts that cover differential forms and related
material and the instructor who wishes to treat that material in depth
should supplement my text with one of those.

Chapter 12 [now Chapter 14] is dessert. For I have waited until now
to introduce the language of metric spaces. But now comes the power,
for I prove and apply both the Baire category theorem and the Ascoli-
Arzela theorem. This is a suitable finish to a year-long course on the
elegance and depth of rigorous reasoning.

I would teach my second course in real analysis by covering all of
Chapters 8 through 12. Material in Chapters 10 and 12 is easily omitted
if time is short.

Audience

This book is intended for college juniors and seniors and some be-
ginning graduate students. It addresses the same niche as the classic
books of Apostol, Royden, and Rudin. However, the book is written for
today's audience in today's style. All the topics which excited my sense
of wonder as a student-the Cantor set, the Weierstrass nowhere dif-



ferentiable function, the Weierstrass approximation theorem, the Baire
category theorem, the Ascoli-Arzela theorem-are covered. They can
be skipped by those teaching a course for which these topics are deemed
inappropriate. But they give the subject real texture.
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Chapter 1

Logic and Set Theory

1.1 Introduction
Everyday language is imprecise. Because we are imprecise by convention,
we can make statements like

All automobiles are not alike.

and feel confident that the listener knows that we actually mean

Not all automobiles are alike.

We can also use spurious reasoning like

If it's raining then it's cloudy.
It is not raining.

Therefore there are no clouds.

and not expect to be challenged, because virtually everyone is careless
when communicating informally. (Examples of this type will be consid-
ered in more detail in Section 1.4).

Mathematics cannot tolerate this lack of rigor and precision. In
order to achieve any depth beyond the most elementary level, we must
adhere to strict rules of logic. The purpose of the present chapter is to
discuss the foundations of formal reasoning.

In this chapter we will often use numbers to illustrate logical con-
cepts. The number systems we will encounter are

The natural numbers N = {1, 2A.
* 11

The integers Z = 1..., -3,-2,-1,0,1,2,3 ....}

The rational numbers Q = {.P/q : p is an integer, q is an integer, q
0}

1



2 Chapter 1: Logic and Set Theory

The real numbers R, consisting of all terminating and non-terminating
decimal expansions.

Chapter 2 will be devoted to giving a thorough and rigorous treatment
of number systems. For now we assume that you have seen these number
systems before. They are convenient for illustrating the logical principles
we are discussing and the fact that we have not yet constructed them
rigorously should lead to no confusion.

1.2 "And" and "Or"
The statement

"A and B"

means that both A is true and B is true. For instance,

George is tall and George is intelligent.

means both that George is tall and George is intelligent. If we meet
George and he turns out to be short and intelligent, then the statement
is false. If he is tall and stupid then the statement is false. Finally, if
George is both short and stupid then the statement is false. The state-
ment is true precisely when both properties--intelligence and tallness-
hold. We may summarize these assertions with a truth table. We let

A = George is tall.

and

B = George is intelligent.

The expression
AAB

will denote the phrase "A and B" . In particular, the symbol A is used
to denote "and." The letters "T" and "F" denote "True" and "False"
respectively. Then we have

AAB
T T T
T F F
F T F
F F F

Notice that we have listed all possible truth values of A and B and
the corresponding values of the conjunction A A B .

In a restaurant the menu often contains phrases like



1.2 "And" and "Or" 3

soup or salad

This means that we may select soup or select salad, but we may not
select both. This use of "or" is called the exclusive "or"; it is not the
meaning of "or" that we use in mathematics and logic. In mathematics
we instead say that "A or B" is true provided that A is true or B
is true or both are true. If we let A V B denote "A or B" (the
symbol V denotes "or") then the truth table is

A- B VB
T T T
T F T
F T T
F F F

The only way that "A or B" can be false is if both A is false and
B is false. For instance, the statement

Gary is handsome or Gary is rich.
means that Gary is either handsome or rich or both. In particular, he
will not be both ugly and poor. Another way of saying this is that if
he is poor he will compensate by being handsome; if he is ugly he will
compensate by being rich. But he could be both handsome and rich.

Example 1.1
The statement

x>5 and x<7
is true for the number x = 11/2 because this value of x is both
greater than 5 and less than 7. It is false for x = 8 because this
x is greater than 5 but not less than 7. It is false for z = 3
because this x is less than 7 but not greater than 5.

Example 1.2

The statement

x is even and x is a perfect square
is true for x = 4 because both assertions hold. It is false for
x = 2 because this x, while even, is not a square. It is false for
x = 9 because this z, while a square, is not even. It is false for
x = 5 because this x is neither a square nor an even number.

0

Example 1.3

The statement
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x > 5 or x<2
is true for x = 1 since this x is < 2 (even though it is not > 5).
It holds for x = 6 because this x is > 5 (even though it is not
< 2). The statement fails for x = 3 since this x is neither > 5
nor < 2.

Example 1.4

The statement

x>5 or x<7
is true for every real x.

Example 1.5

The statement (A V B) A B has the following truth table:

vB TAvB nBA B A- -
T T T T
T F T F
F T T T
F F F F

0

The words "and" and "or" are called connectives: their role in sen-
tential logic is to enable us to build up (or connect together) pairs of
statements. In the next section we will become acquainted with the
other two basic connectives "not" and "if-then."

1.3 "Not" and "If-Then"
The statement "not A", written ti A, is true whenever A is false.
For example, the statement

Gene is not tall.

is true provided the statement "Gene is tall" is false. The truth table
for -A is as follows

A A
T F
F T
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Although "not" is a simple idea, it can be a powerful tool when used
in proofs by contradiction. To prove that a statement A is true using
proof by contradiction, we instead assume N A. We then show that
this hypothesis leads to a contradiction. Thus ti A must be false;
according to the truth table, we see that the only possibility is that A
is true. We will first encounter proofs by contradiction in Section 1.8.

Greater understanding is obtained by combining connectives:

Example 1.6

Here is the truth table for ti (A V B):

A V N AVB
T
T
F
F

T
F
T
F

T
T
T
F

F
F
F
T

0

Example 1.7

Now we look at the truth table for (# A) A (N B):

T T F F F
T F F T F
F T T F F
F F T T T

Notice that the statements (AVB) and (N A) A (. B)
have the same truth table. We call such pairs of statements logically
equivalent.

The logical equivalence of ti (A V B) with (N A) A (' B)
makes good intuitive sense: the statement A V B fails if and only
if A is false and B is false. Since in mathematics we cannot rely on
our intuition to establish facts, it is important to have the truth table
technique for establishing logical equivalence. The exercise set will give
you further practice with this notion.

A statement of the form "If A then B" asserts that whenever A
is true then B is also true. This assertion (or "promise") is tested when
A is true, because it is then claimed that something else (namely B)
is true as well. However, when A is false then the statement "If A
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then B" claims nothing. Using the symbols A = B to denote "If A
then B", we obtain the following truth table:

B B
T T T
T F F
F T T
F F T

Notice that we use here an important principle of Aristotelian logic:
every sensible statement is either true or false. There is no "in between"
status. Thus when A is false then the statement A = B is not
tested. It therefore cannot be false. So it must be true.

Example 1.8

The statement A B is logically equivalent with
(A A - B). For the truth table for the latter is

A a --NB AA ,B N A,
T T F F T
T F T T F
F T F F T
F F T F T

N

which is the same as the truth table for A = B.

There are in fact infinitely many pairs of logically equivalent statements.
But just a few of these equivalences are really important in practice--
most others are built up from these few basic ones. The other basic pairs
of logically equivalent statements are explored in the exercises.

Example 1.9

The statement

If x is negative then -5 x is positive.
is true. For if x < 0 then -5 x is indeed > 0; if x > 0 then the
statement is unchallenged.

Example 1.10

The statement

If {x> 0 and x2 < 0} then x>10.
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is true since the hypothesis "x > 0 and x2 < 0" is never true.
0

Example 1.11

The statement

If x > 0 then {x2 < 0 or 2x < 0)

is false since the conclusion "x2 < 0 or 2x < 0" is false when-
ever the hypothesis x > 0 is true.

1.4 Contrapositive, Converse, and "Iff"
The statement

If A then B. or A . B.

is the same as saying

A suffices for B.

or as saying

A only if B.

All these forms are encountered in practice, and you should think about
them long enough to realize that they all say the same thing.

On the other hand,

If B then A. or B = A.

is the same as saying

A is necessary for B.

or as saying

A if B.

We call the statement B = A the converse of A = B.

Example 1.12

The converse of the statement

If x is a healthy horse then x has four legs.
is the statement

If x has four legs then x is a healthy horse.
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Notice that these statements have very different meanings: the
first statement is true while the second (its converse) is false.
For example, my desk has four legs but it is not a healthy horse.

The statement

A if and only if B.

is a brief way of saying

If A then B. and If B then A.
We abbreviate A if and only if B as A q B or as A iff
B. Here is a truth table for A q B.

A A=B BMA A *B
T T T T T
T F F T F
F T T F F
F F T T T

Notice that we can say that A q B is true only when both A
B and B A are true. An examination of the truth table reveals
that A . B is true precisely when A and B are either both true
or both false. Thus A q B means precisely that A and B are
logically equivalent. One is true when and only when the other is true.

Example 1.13
The statement

x>0a2x>0
is true. Forifx>Othen 2x>O;andif2x>Othen x>0.

Example 1.14
The statement

x>0t--> x2>0
is false. For x > 0 x2 > 0 is certainly true while x2 >
O=x>0 is false ((-3)2>0but-3? 0).
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Example 1.15
The statement

{N (A V B)} a {(N A) A (N B)}

is true because the truth table for N(A V B) and that for
(N A) A (N B) are the same (we noted this fact in the last
section). Thus they are logically equivalent: one statement is
true precisely when the other is. Another way to see the truth
of (s) is to examine the truth table:

A

(*)

B N V N /\ N N V « N A N
T T
T F F F T
F T F F T
F F T T T

O

Given an implication

A=B,
the contrapositive statement is defined to be the implication

N B N A.

The contrapositive is logically equivalent to the original implication, as
we see by examining their truth tables:

T T T
T F F
F T T
F F T

and

A B N A N N =:o- N )
T
T
F
F

T
F
T
F

F
F
T
T

F
T
F
T

T
F
T
T

Example 1.16

The statement
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If it is raining, then it is cloudy.
has, as its contrapositive, the statement

If there are no clouds, then it is not raining.
A moment's thought convinces us that these two statements
say the same thing: if there are no clouds, then it could not be
raining; for the presence of rain implies the presence of clouds.

0

The main point to keep in mind is that, given an implication A '

B, its converse B . A and its contrapositive (-, B) = (r A)
are two different statements. The converse is distinct from, and logically
independent from, the original statement. The contrapositive is distinct
from, but logically equivalent to, the original statement.

1.5 Quantifiers
The mathematical statements that we will encounter in practice will use
the connectives "and", "or", "not", "if-then", and "iff". They will
also use quantifiers. The two basic quantifiers are "for all" and "there
exists".

Example 1.17
Consider the statement

All automobiles have wheels.
This statement makes an assertion about all automobiles. It is
true, just because every automobile does have wheels.

Compare this statement with the next one:

There exists a woman who is blonde.
This statement is of a different nature. It does not claim that
all women have blonde hair-merely that there exists at least
one woman who does. Since that is true, the statement is true.
0

Example 1.18

Consider the statement

All positive real numbers are integers.
This sentence asserts that something is true for all positive real
numbers. It is indeed true for some positive real numbers, such
as 1 and 2 and 193. However, it is false for at least one positive
number (such as ir), so the entire statement is false.

Here is a more extreme example:
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The square of any real number is positive.

This assertion is almost true-the only exception is the real
number 0: 02 = 0 is not positive. But it only takes one exception
to falsify a "for all" statement. So the assertion is false. 0

Example 1.19

Look at the statement

There exists a real number which is greater than 5.

In fact there are lots of real numbers which are greater than 5;
some examples are 7, 8x, and 97/3. Since there is at least one
number satisfying the assertion, the assertion is true.

A somewhat different example is the sentence

There exists a real number which satisfies the equation
x3 -2x2+x-2=0.

There is in fact only one real number which satisfies the equa-
tion, and that is x = 2. Yet that information is sufficient to
make the statement true. 0

We often use the symbol `d to denote "for all" and the symbol 3 to
denote "there exists". The assertion

bx, x+l <x

claims that, for every x, the number x + 1 is less than x. If we take our
universe to be the standard real number system, this statement is false.
The assertion

3x, x2 = x

claims that there is a number whose square equals itself. If we take our
universe to be the real numbers, then the assertion is satisfied by x = 0
and by x = 1. Therefore the assertion is true.

Quite often we will encounter `d and 3 used together. The following
examples are typical:

Example 1.20
The statement

Vx By, y > x

claims that for any number x there is a number y which is greater
than it. In the realm of the real numbers this is true. In fact
y = x + 1 will always do the trick.
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The statement
3xVy, y>x

has quite a different meaning from the first one. It claims that
there is an x which is less than every y. This is absurd. For
instance, x is not less than y = x - 1.

Example 1.21

The statement
dx dy, x2 + y2 > 0

is true in the realm of the real numbers: it claims that the sum
of two squares is always greater than or equal to zero.

The statement

3x 9y, x+2y=7

is true in the realm of the real numbers: it claims that there
exist x and y such that x + 2y = 7. Certainly the numbers
x = 3, y = 2 will do the job (although there are many other
choices that work as well).

We conclude by noting that d and 3 are closely related. The state-
ments

dx, B(x) and - ax, - B(x)

are logically equivalent. The first asserts that the statement B(x) is
true for all values of x. The second asserts that there exists no value of
x for which B(s) fails, which is the same thing.

Likewise, the statements

Dx, B(x) and - dx, - B(x)

are logically equivalent. The first asserts that there is some x for which
B(x) is true. The second claims that it is not the case that B(x) fails
for every x, which is the same thing.

REMARK 1.1 Most of the statements that we encounter in math-
ematics are formulated using "for all" and "there exists." For example,

Through every point P not on a line f there is a line parallel
to f.

Each continuous function on a closed, bounded interval has
an absolute maximum.
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Each of these statements uses (implicitly) both a "for all" and a "there
exists".

A "for all" statement is like an infinite conjunction. The statement
Vx, P(x) (when x is a natural number, let us say) says P(1) A P(2) A
P(3) A . A "there exists" statement is like an infinite disjunction.
The statement 3x, Q(x) (when x is a natural number, let us say) says
Q(1) V Q(2) V Q(3) V . Thus it is neither practical nor sensible to
endeavor to verify statements such as these using truth tables. This is
one of the chief reasons that we learn to produce mathematical proofs.
One of the main themes of the present text is to gain new insights and to
establish facts about the real number system using mathematical proofs.
I

1.6 Set Theory and Venn Diagrams
The two most basic objects in all of mathematics are sets and functions.
In this section we discuss the first of these two concepts.

A set is a collection of objects. For example, "the set of all blue
shirts" and "the set of all lonely whales" are two examples of sets. In
mathematics, we often write sets with the following "set-builder" nota-
tion:

{x:x+5> 0}
This is read "the set of all x such that x + 5 is greater than 0. " The
universe from which x is chosen (for us this will usually be the real
numbers) is understood from context, though sometimes we may be
more explicit and write

{XER:x+5>0}.

Notice that the role of x in the set-builder notation is as a dummy
variable; the set we have just described could also be written as

{s:s+5>0}

or

{a: a+5>0}
The symbol E is used to express membership in a set; for example,

the statement
4E{x:x>0}

says that 4 is a member of (or an element of) the set of all numbers x
which are greater than 0. In other words, 4 is a positive number.

If A and B are sets then the statement

AcB
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is read "A is a subset of B". It means that each element of A is also an
element of B (but not vice versa!).

Example 1.22

Let

A = {x e R: y such that x y2}

and

B= It ER:t+3>-5}.
Then A C B. Why? The set A consists of those numbers that
are squares- that is, A is just the nonnegative real numbers.
The set B contains all numbers which are greater than -8. Since
every nonnegative number (element of A) is also greater than
-8 (element of B), it is correct to say that A C B.

However, it is not correct to say that B C A, because -2 is
an element of B but is not an element of A.

We write A = B to indicate that both A C B and B C_ A. In these
circumstances we say that the two sets are equal: every element of A is
an element of B and every element of B is an element of A.

We use a slash through the symbols E or C to indicate negation:

-4¢ {x:x>-2}
and

{X: x = x2} ¢ {y: y > 1/21.
It is often useful to combine sets. The set A U B, called the union

of A and B, is the set consisting of all objects which are either elements
of A or elements of B (or both). The set A n B, called the intersection
of A and B, is the set consisting of all objects which are elements of both
A and B.

Example 1.23

Let

A={x:-4<x<3} , B={x:-1<x<7},
C=(x:-9<x<12).

Then

AUB={x:-4<x<7} AnB={x:-1<x<3},
BUC={x:-9<x<12} , BnC={x:-1<x<7}.

Notice that B U C = C and B n C = B because B C C.
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Example 1.24

Let
A={aEZ:a>9}

B={QER:-4<,3<24},
C={yER:13<y<30}.

Then

(AnB)nC={xEZ:9<x<24}nC={tEZ:13<t<24}.
Also

An(BUC)=An{xER:-4<x<30}={yEZ:9<x<30}.
Try your hand at calculating A U (B U C).

The symbol 0 is used to denote the set with no elements. We call
this set the empty set. For instance,

A = {xER:x2 <0}

is a perfectly good set. However, there are no real numbers which satisfy
the given condition. Thus A is empty, and we write A = 0.

Example 1.25

Let
A= {x:x> 8} a n d B= {x: x2 <4}.

ThenAUB={x:x>8or -2<x<2} while AnB=O.

We sometimes use a Venn diagram to aid our understanding of set-
theoretic relationships. In a Venn diagram, a set is represented as a
domain in the plane. The intersection A n B of two sets A and B is the
region common to the two domains-see Figure 1.1.

Now let A, B, and C be three sets. The Venn diagram in Figure 1.2
makes it easy to see that A n (B U C) = (A n B) U (A n C).

If A and B are sets then A \ B denotes those elements which are in
A but not in B. This operation is sometimes called subtraction of sets
or set-theoretic difference.

Example 1.26

Let
A = {x:x>4}

and
B={x:x<7}.



4
1
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Then

while

Figure 1.3

A \ B = {x:x>7}

B \ A = {x:x<4}.

Notice that A \ A = 0; this fact is true for any set.

The Venn diagram in Figure 1.3 illustrates the fact that

A\ (Bu C) = (A \ B) n (A \ C)

17

A Venn diagram is not a proper substitute for a rigorous mathemat-
ical proof. However, it can go a long way toward guiding our intuition.

We conclude this section by mentioning a useful set-theoretic opera-
tion and an application. Suppose that we are studying subsets of a fixed
set X. We sometimes call X the "universal set". If S C X then we use
the notation IS to denote the set X \ S or {x E X : x ¢ S}. The set IS
is called the complement of S (in the set X).

Example 1.27

When we study real analysis, most sets that we consider are
subsets of the real line JR. If S = {x E IY : 0 < x < 5} then
`S={xER:x<0}u{x ER:x>5}. If T is the set of
rational numbers then IT is the set of irrational numbers.

If A, B are sets then it is straightforward to verify that °(A U B) _
°A n °B and c(A n B) = cA U `B. More generally, we have
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Yalue of Yen Apiast Dollar

Figure 1.4

If {Aa}aEA are sets then

(nA-)
= UCAQ

aEA QEA

and

(U Aa/J) = n eAa
QEA cEA

The verification of these equalities (known as de Morgan's laws) is left
as an exercise.

1.7 Relations and Functions
In more elementary mathematics courses we learn that a "relation" is
a rule for associating elements of two sets; and a "function" is a rule
that associates to each element of one set a unique element of another
set. The trouble with these definitions is that they are imprecise. For
example, suppose we define the function f (x) to be identically equal to
1 if there is life as we know it on Mars and to be identically equal to 0
if there is no life as we know it on Mars. Is this a good definition? It
certainly is not a very practical one!

More important is the fact that using the word "rule" suggests that
functions are given by formulas. Indeed, some functions are; but most
are not. Look at any graph in the newspaper - of unemployment, or the
value of the Japanese Yen (Figure 1.4), or the Gross National Product.
The graphs represent values of these parameters as a function of time.
And it is clear that the functions are not given by elementary formulas.
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To summarize, we need a notion of function, and of relation, which
is precise and flexible and which does not tie us to formulas. We begin
with relations, and then specialize down to functions.

Definition 1.1 Let A and B be sets. A relation on A and B is a
collection of ordered pairs (a, b) such that a E A and b E B. (Notice that
we did not say "the collection" of all ordered pairs-that is, a relation
consists of some of the ordered pairs, but not necessarily all of them.)

Example 1.28

Let A be the real numbers and B the integers. The set

R = {(ir, 2), (3.4, -2), (V, 94), (n, 50), (2+ 17, -2)}

is a relation on A and B. It associates certain elements of A
to certain elements of B. Observe that repetitions are allowed:
it E A is associated to both 2 and 50 in B; also -2 E B is
associated to both 3.4 and 2 + 17 in A.

Now let

A=13,17,28,42} and B=110,20,30,40).

Then

7Z = {(3,10), (3, 20), (3, 30), (3, 40), (17, 20), (17, 30),

(17, 40), (28,30), (28,40))

is a relation on A and B. In fact a E A is related to b E B
precisely when a < b.

Example 1.29

Let

A = B = {meter, pound, foot, ton, yard, ounce}.

Then

R = {(foot,meter), (foot, yard), (meter,yard), (pound,ton),
(pound,ounce),(ton, ounce), (meter,foot), (yard,foot),
(yard,meter),(ton,pound),(ounce,poimd), (ounce,ton)}

is a relation on A and B. In fact two words are related by R if
and only if they measure the same thing: foot, meter, and yard
measure length while pound, ton, and ounce measure weight.

Notice that the pairs in 1., and in any relation, are ordered
pairs: the pair (foot,yard) is different from the pair (yard,foot).
0
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Example 1.30
Let

A = {25.37,428,695} and B = {14,7,234.999}

Then

I Z= {(25, 234), (37, 7). (37, 234), (428,14). (428.234), (695, 999)}

is a relation on A and B. In fact two elements are related by R
if and only if they have at least one digit in common.

A function is a special type of relation. as we shall now learn.

Definition 1.2 Let A and B be sets. A function from A to B is a
relation R on A and B such that for each a E A there is one and only
one pair (a, b) E R. We call A the domain of the function and we call
B the range.

Example 1.31

Let
A={1.2.3.4} and B={a,:9.-.6}.

Then
R = { (1, y), (2, b). (3, -y), (4, a) }

is a function from A to B. Notice that there is precisely one pair
in R for each element of A. However, notice that repetition of
elements of B is allowed. Notice also that there is no apparent
"pattern" or "rule" that determines R.

With the same sets A and B consider the relations

S = {(1,a),(2,i3),(3,-)}

and

T = {(1, a), (2, 0), (3,'Y), (4, 6), (2, -y)} .

Then S is not a function because it violates the rule that there
be a pair for each element of A. Also T is not a function because
it violates the rule that there be just one pair for each element
of A.

The relations and function described in the last example were so
simple that you may be wondering what happened to the kinds of func-
tions that we usually look at in mathematics. Now we consider some of
those.



1.7 Relations and Functions 21

Example 1.32

Let A = R and B = R, where R denotes the real numbers (to
be discussed in detail in Chapter 2). The relation

R={(x,sinx):xEA}

is a function. For each a E A = R there is one and only one
ordered pair with first element a.

NowletA=litandB={xER:-2<x<2}.Then

S={(x,sinx):xEA)

is also a function. Technically speaking, it is a different function
from R because it has a different range. However, this distinc-
tion often has no practical importance and we shall not mention
the difference. It is frequently convenient to write functions like
Ror Sas

R(x) = sin x

and
S(x) = sin x.

0

The last example suggests that we distinguish between the set B
where a function takes its values and the set of values that the function
actually assumes.

Definition 1.3 Let A and B be sets and let f be a function from A
to B. Define the image of f to be

Image f = {b E B : 3a E A such that f (a) = b} .

The set Image f is a subset of the range B.

Example 1.33

Both the functions R and S from the last example have the set
{XER:-1<x<1}as image. 0

If a function f has domain A and range B and if S is a subset of A
then we define

f(S) ={bE B:b= f(s) for some eES}.

The set f (A) equals the image of f.
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Example 1.34

Let A = R and B = 0, 11. Consider the function

f = {(x, y) : y = 0 if x is rational and

y = 1 if x is irrational}.

The function f is called the Dirichlet function (P. G. Lejeune-
Dirichlet, 1805-1859). It is given by a rule, but not by a formula.

Notice that f (Q) = {0} and f (R) _ {0,1 }.

Definition 1.4 Let A and B be sets and f a function from A to B.
We say that f is one-to-one if whenever (al, b) E f and (a2, b) E f

then al = a2.
We say that f is onto if whenever b E B then there exists an a E A

such that (a, b) E f.

Example 1.35

Let A = R and B = R. Consider the functions

f(x) = 2x + 5 g(x) = arctan x

h(x) = sin x j(x) = 2x3 + 9x2 + 12x + 4.

Then f is both one-to-one and onto, g is one-to-one but not
onto, j is onto but not one-to-one, and h is neither.

Refer to Figure 1.5 to convince yourself of these assertions.

When a function f is both one-to-one and onto then it is called a
bijection of its domain to its range. Sometimes we call such a function
a set-theoretic isomorphism. In the last example, the function f is a
bijection of R to R.

if f and g are functions, and if the image of g is contained in the
domain of f, then we define the composition f o g to be

{(a, c) : 3b such that g(a) = b and f (b) = c} .

This may be written more simply, using the notation introduced in Ex-
ample 1.32, as

f o g(a) = .f (g(a)) = f (b) = c .

Let f have domain A and range B. Assume for simplicity that the
image of f is all of B. If there exists a function g with domain B and
range A such that

fog(b)=b VbEB
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y

y = sin x

y

x

y = g(x)

Figure 1.5



24 Chapter 1: Logic and Set Theory

and

go f(a)=a b'aEA,
then g is called the inverse of f.

Clearly, if the function f is to have an inverse, then f must be one-
to-one. For if f (a) = f (a') = b then it cannot be that both g(b) = a
and g(b) = a'. Also f must be onto. For if some b E B is not in the
image of f then it cannot hold that f o g(b) = b. It turns out that these
two concfitions are also sufficient for the function f to have an inverse:
if f has domain A and range B and if f is both one-to-one and onto
then f has an inverse. This matter is explored more thoroughly in the
exercises.

Example 1.36

Define a function f, with domain IR and range {x E R : x > 0}
by the formula f (.r) = x2. Then f is onto but is not one-to-one,
hence it cannot have an inverse. This is another way of saying
that a positive real number has two square roots not one.

However, the function g, with domain {x E lft : x > 0} and
range {x E R : x > 0}, given by the formula g(x) = x2, does
have an inverse. In fact the inverse function is h(x) = +V/T7.

The function k(x) = x3, with domain Ilk and range R, is both
one-to-one and onto. It therefore has an inverse: the function
rn(x) = x1/3 satisfies ko7n(x) = x, and mok(x) = x for all x. 0

1.8 Countable and Uncountable Sets
One of the most profound ideas of modern mathematics is Georg Can-
tor's theory of the infinite (George Cantor, 1845-1918). Cantor's insight
was that infinite sets can be compared by size, just as finite sets can.
For instance, we think of the number 2 as less than the number 3; so
a set with two elements is "smaller" than a set with three elements.
We would like to have a similar notion of comparison for infinite sets.
In this section we will present Cantor's ideas; we will also give precise
definitions of the terms "finite" and "infinite."

Definition 1.5 Let A and B be sets. We say that A and B have
the same cardinality if there is a function f from A to B which is both
one-to-one and onto (that is, f is a bijection from A to B). We write
card(A) = card(B).
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Example 1.37

Let A = {1,2,3,4,5},B = 6,e},C = {a,b,c,d,e,f}.
Then A and B have the same cardinality because the function

f = { (1, a), (2, 0), (3, y), (4, 6), (5, e) }

is a bijection of A to B. This function is not the only bijection
of A to B (can you find another?), but we are only required to
produce one.

On the other hand, A and C do not have the same cardi-
nality; neither do B and C.

Notice that if card(A) = card(B) via a function f, and card(B) =
card(C) via a function f2 then card(A) = card(C) via the function f2o fl.

Definition 1.6 Let A and B be sets. If there is a one-to-one function
from A to B but no bijection between A and B then we will write

card(A) < card(B).

This notation is read "A has smaller cardinality than B."
We use the notation

card(A) < card(B)

to mean that either card(A) < card(B) or card(A) = card(B).

Example 1.38

An extremely simple example of this last concept is given by
A = {1, 2,31 and B = {a, b, c, d, a}. Then the function

f : A B
1Ha
2,-. b
3'-+c

is a one-to-one function from A to B. But there is no one-to-one
function from B to A. We write

card(A) < card(B).

We shall see more profound applications, involving infinite sets,
in our later discussions.
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Notice that card(A) < card(B) and card(B) < card(C) imply that
card(A) < card(C). Moreover, if A C B, then the inclusion map i(a) = a
is a one-to-one function of A into B; therefore card(A) < card(B).

The next theorem gives a useful method for comparing the cardi-
nality of two sets.

Theorem 1.1 [Schroeder-Bernstein]
Let A, B, be sets. If there is a one-to-one function f : A B and a
one-to-one function g : B - A, then A and B have the same cardinality.

Proof: It is convenient to assume that A and B are disjoint; we may
do so by replacing A by {(a, 0) : a E A} and B by {(b,1) : b E B}.
Let D be the image of f and C be the image of g. Let us define a
chain to be a sequence of elements of either A or B-that is, a function
0: N -+ (A U B)--such that

0(1)EB\D;

If for some j we have O(j) E B, then 0(j + 1) = g(O(j));

If for some j we have 0(j) E A, then /(j + 1) = f(O(j)).

We see that a chain is a sequence of elements of A U B such that the
first element is in B \ D, the second in A, the third in B, and so on.
Obviously each element of B \ D occurs as the first element of at least
one chain.

Define S = {a E A : a is some term of some chain}. It is helpful to
note that

S = {x : x can be written in the form
g(f (g(... g(y) ...))) for some y E B \ D}.

(*)

We set

k(x)=<g-'(x)ifxES\S

Note that the second half of this definition makes sense because S C_ C.
Then k : A - B. We shall show that in fact k is a bijection.

First notice that f and g-1 are one-to-one. This is not quite enough
to show that k is one-to-one, but we now reason as follows: If f (x1) =
g-1(x2) for some x1 E A \ S and some x2 E S. then x2 = g(f (xl )).
But, by (*), the fact that x2 E S now implies that xl E S. That is a
contradiction. Hence k is one-to-one.
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It remains to show that k is onto. Fix b E B. We seek an x E A
such that k(x) = b.
Case A: If g(b) E S, then k(g(b)) - g-'(g(b)) = b hence the x that we
seek is g(b).

Case B: If g(b) ig S, then we claim that there is an x E A such that
f (x) = b. Assume this claim for the moment.

Now the x that we found in the last paragraph must lie in A \ S.
For if not then x would be in some chain. Then f (x) and g(f (x)) = g(b)
would also lie in that chain. Hence g(b) E S, and that is a contradiction.
But x E A \ S tells us that k(x) = f (x) = b. That completes the proof
that k is onto. Hence k is a bijection.

To prove the claim in Case B, notice that if there is no x with f (x) _
b, then b E B \ D. Thus some chain would begin at b. So g(b) would be
a term of that chain. Hence g(b) E S and that is a contradiction.

The proof of the Schroeder-Bernstein theorem is complete.

REMARK 1.2 Let us reiterate some of the earlier ideas in light
of the Schroeder-Bernstein theorem. If A and B are sets and if there
is a one-to-one function f : A -+ B, then we know that card(A) <
card(B). If there is no one-to-one function g : B A, then we may
write card(A) < card(B). But if instead there is a one-to-one function g :
B -+ A, then card(B) < card(A) and the Schroeder-Bernstein theorem
guarantees therefore that card(A) = card(B). I

Now it is time to look at some specific examples.

Example 1.39

Let E be the set of all even integers and 0 the set of all odd
integers. Then

card(E) = card(O).

Indeed, the function
f(i) =j+1

is a bijection from E to O. 0

Example 1.40
Let E be the set of even integers. Then

card(E) = card(Z).

The function
g(.7) _ .?/2
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is a bijection from E to Z.

This last example is a bit surprising, for it shows that a set (Z) can
be put in one to one correspondence with a proper subset (E) of itself.

Example 1.41

We have
card(Z) = card(N).

We define the function f from Z to N as follows:

f(j) = -(2j + 1) if j is negative

f(j) = 2j + 2 if j is positive or zero

The values that f takes on the negative numbers are 1, 3, 5, ... ,
on the positive numbers are 4,6,8,..., and F(O) = 2. Thus f is
one-to-one and onto.

Definition 1.7 If a set A has the same cardinality as N then we say
that A is countable.

By putting together the preceding examples, we see that the set
of even integers, the set of odd integers, and the set of all integers are
countable sets.

Example 1.42

The set of all ordered pairs of positive integers

S={(j,k):j,kEN}

is countable.
To see this we will use the Schroeder-Bernstein theorem.

The function
f(j) = (j, l)

is a one-to-one function from N to S. Also. the function

is a one-to-one function from S to N. Let n be the number of
digits in the number k. Notice that g(j, k) is obtained by writing
the digits of j, followed by j + k - n zeroes, then followed by the
digits of k. For instance,

g(23, 714) = 23000..000714,
734
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where there are 23 + 714 - 3 = 734 zeroes between the 3 and the
7. It is clear that g is one-to-one. By the Schroeder-Bernstein
theorem, S and N have the same cardinality; hence S is count-
able. O

There are other ways to do the last example, and we shall explore
them in the exercises.

Since there is a bijection of the set of all integers with the set N, it
follows from the last example that the set of all pairs of integers (positive
and negative) is countable.

Notice that the word "countable" is a good descriptive word: if S is
a countable set then we can think of S as having a first element (the one
corresponding to 1 E N), a second element (the one corresponding to
2 E N), and so forth. Thus we write S = {s(1), s(2), ...} = {sl, 82, ...}.

Definition 1.8 A nonempty set S is called finite if there is a bijection
of S with a set of the form {1, 2, . . ., n) for some positive integer n. If
no such bijection exists, then the set is called infinite.

An important property of the natural numbers N is that any subset
S C N has a least element. This is known as the Well Ordering Prin-
ciple, and is studied in a course on logic. In the present text we take
the properties of the natural numbers as given. We use some of these
properties in the next proposition.

Proposition 1.1
If S is a countable set and R is a subset of S then either R is empty or

R is finite or R is countable.

Proof: Assume that R is not empty.
Write S = {31, 82, ...}. Let ji be the least positive integer such that

8j, E R. Let j2 be the least integer following jl such that s,;2 E R.
Continue in this fashion. If the process terminates at the nth step, then
R is finite and has n elements.

If the process does not terminate, then we obtain an enumeration
of the elements of the elements of R :

1 l-- sj,
2'-'6

$.12

etc.
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All elements of R are enumerated in this fashion since it > f. Therefore
R is countable.

A set is called denumerable if it is either empty, finite or countable.
In actual practice, mathematicians use the word "countable" to describe
sets which are either empty, finite, or countable. In other words, they
use the word "countable" interchangeably with the word "denumerable."
We shall also indulge in this slight imprecision in this book when no
confusion can arise as a result.

The set Q of all rational numbers consists of all expressions
a

b'
where a and b are integers and b 0 0. Thus Q can be identified with the
set of all pairs (a, b) of integers with b # 0. After discarding duplicates,
such as 2 = 2, and using Examples 1.41, 1.42 and Proposition 1.1, we
find that the set Q is countable.

Theorem 1.2
Let S1, S2 be countable sets. Set S = S1 U S2. Then S is countable.

Proof: Let us write
1 1S1 = {312,...}

2 2

If S1 fl S2 = 0 then the function

sk ' ' (j, k)J

is a bijection of S with a subset of {(j, k) : j, k E N}. We proved earlier
(Example 1.42) that the set of ordered pairs of elements of N is countable.
By Proposition 1.1, S is countable as well.

If there exist elements which are common to Sl , S2 then discard any
duplicates. The same argument (use the preceding proposition) shows
that S is countable.

Proposition 1.2
If S and T are each countable sets then so is

SxT-{(s,t):sESt T}.

Proof: Since S is countable there is a bijection f from S to N. Likewise
there is a bijection g from T to N. Therefore the function

(f x g)(s,t) = (f(s),g(t))
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is a bijection of S x T with N x N, the set of order pairs of positive
integers. But we saw in Example 1.42 that the latter is a countable set.
Hence soisSxT. 0

REMARK 1.3 We used the proposition as a vehicle for defining the
concept of set-theoretic product: If A and B are sets then

AxB-{(a,b):aEA,bEB}.

More generally, if A1, A2i ... , Ak are sets then

AlxA2x...xAk-{(al,a2i...,ak):ajEAj forallj=1,...,k}.

I

Corollary 1.1
If S1i S2,. . ., Sk are each countable sets then so is the set

S1 X S2 X ... X Sk = {(s1i...,sk) : 81 E S1,...,sk E Sk}

consisting of allordered k-tuples (81,82,-..,8k) with sj E S;.

Proof: We may think of S1 x S2 x S3 as (S1 x S2) x S3. Since S1 x S2
is countable (by the proposition) and S3 is countable, then so is (S1 x
S2) x S3 = S1 x S2 x S3 countable. Continuing in this fashion, we can
see that any finite product of countable sets is also a countable set. 0

Corollary 1.2
The countable union of countable sets is countable.

Proof: Let A1i A2, ... each be countable sets. If the elements of Aj
are enumerated as {ak} and if the sets A, are pairwise disjoint then the
correspondence

ak k)

is one-to-one between the union of the sets A., and the countable set
N x N. This proves the result when the sets A,, have no common el-
ement. If some of the A,, have elements in common then we discard
duplicates in the union and use Proposition 1.1. 0

Proposition 1.3
The collection P of all polynomials with integer coefficients is countable.
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Proof: Let Pk be the set of polynomials of degree k with integer coef-
ficients. A polynomial p of degree k has the form

P(-T) = PO + p13, + p2-2 + ... + pkXk

The identification

P(te)- (Po,P1,....Pk)

identifies the elements of Pk with the (k + 1)-tuples of integers. By
Corollary 1.1, it follows that Pk is countable. But then Corollary 1.2
implies that

00

UPi
7=0

is countable.

Georg Cantor's remarkable discovery is that not all infinite sets are
countable. We next give an example of this phenomenon.

In what follows, a sequence on a set S is a function from N to S. We
usually write such a sequence as s(1), s(2), s(3), ... or a s 81,82,83.....

Example 1.43
There exists an infinite set which is not countable (we call such a
set uncountable). Our example will be the set S of all sequences
on the set {O, 1}. In other words, S is the set of all infinite
sequences of Os and 1s. To see that S is uncountable, assume
the contrary. Then there is a first sequence

={ 1}00S1 si j=',
a second sequence

S2=Is 2}0ci i=1 ,
and so forth. This will be a complete enumeration of all the
members of S. But now consider the sequence T = {tj}

1

which we construct as follows:

If si=Othen make t1=1;if si=1 then set t1=0;

If s2 = 0 then make t2 = 1; if 522 = 1 then set t2 = 0;

If 93 = 0 then make t3 = 1; if s3 = 1 then set t3 = 0;

If s = 0 then make t3 = 1; if s1 = 1 then make tj = 0;

etc.
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Now the sequence T differs from the first sequence S' in
the first element: tl 3k si.

The sequence T differs from the second sequence S2 in the
second element: t2 0 sa.

And so on: the sequence T differs from the jth sequence
Si in the jth element: t3 s,'. So the sequence T is not in
the set S. But T is supposed to be in the set S because it is a
sequence of Os and is and all of these have been hypothesized
to be enumerated.

This contradicts our assumption, so S must be uncountable.
0

Example 1.44

Consider the set of all decimal representations of numbers--both
terminating and non-terminating. Here a terminating decimal
is one of the form

27.43926

while a non-terminating decimal is one of the form

3.14159265....

In the case of the non-terminating decimal, no repetition is im-
plied; the decimal simply continues without cease.

Now the set of all those decimals containing only the digits 0
and 1 can be identified in a natural way with the set of sequences
containing only 0 and 1 (just put commas between the digits).
And we just saw that the set of such sequences is uncountable.

Since the set of all decimal numbers is an even bigger set,
it must be uncountable also.

As you may know, the set of all decimals identifies with the
set of all real numbers. We find then that the set R of all real
numbers is uncountable. (Contrast this with the situation for
the rationals.) In the next chapter we will learn more about how
the real number system is constructed using just elementary set
theory.

33

It is an important result of set theory (due to Cantor) that, given
any set S, the set of all subsets of S (called the power set of S) has
strictly greater cardinality than the set S itself. As a simple example,
let S = {a, b, c}. Then the set of all subsets of S is

0, {a}, {b}, {c}, {a, b}, {a, c), {b, c}, {a, b, c} .

The set of all subsets has eight elements while the original set has
just three.
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Even more significant is the fact that if S is an infinite set then
the set of all its subsets has greater cardinality than S itself. This is
a famous theorem of Cantor. Thus there are infinite sets of arbitrarily
large cardinality.

In some of the examples in this section we constructed a bijection
between a given set (such as Z) and a proper subset of that set (such as
E, the even integers). It follows from the definitions that this is possible
only when the sets involved are infinite.

Exercises
1. Let the universe be the real number system. Let S = "x2 > 0",

T = "blue is a primary color", U = "5 < 3" , and V = "x > 7
and x < 2." Which of the following statements is true and which
is false (use a truth table):

a) S=T
b) T=S
c) S V T

d) S) A U

e) (NUAV)
f) UVV
g) U V S

h) - (S U)

i) S V

j)T=U
2. Prove that

a) A . B is logically equivalent to , (A A (" B))

b) A B is logically equivalent to (- (A A (- B))) A
(B A (- A)))

c) A V B is logically equivalent to - ((- A) A (- B))

d) A A B is logically equivalent to - ((N A) V (- B))
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3. The universe is the real numbers. Which of the following state-
ments is true?

a) dx3y , y < x2

b) 3ydx ,x2+y2 < -3
c) 3x`dy,y+x2>0
d) 3xVy ,x+y2 > 0
e) dx3y, (x > 0) (y > O A y2 = x)

f) tlx3y , (x > 0) = (y:5 O n y2 = x)
g) `da` bVc3x , axe + bx + c = 0

4. Write out each of the statements in Exercise 3 using a complete
English sentence (no symbols!).

5. Let p(x, y) be a statement about the variables x and y. Which of
the following pairs of statements are logically equivalent?

(a) Vx3y , p(x, y) and . 3xdy , - p(x, y);

(b) Vx3y , p(x, y) and 3yVx , p(x, y).

6. Let the universe be the real number system. Let

A={xE!R:x>0} , B={2,4,8,16,32},

C = {2,4,6,8, 10,12,14} ,

D={x:-3<x<9} , E={x:x<1}.

Calculate the six sets

BnC, BuC, An(DuE),
Au(BnC), (AnC)u(BnD),

An(Bn(Cn(DnE))).

7. Which of the following sets is countable and which is not (provide
detailed justification for your answers):

(a) the set of irrational numbers
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(b) the set of terminating decimals
(c) the set of real numbers between 0.357 and 0.358

(d) Q x Q
(e) the set of numbers obtained from f and by finitely many

arithmetic operations (+, -, x, -).
(f) NxZ
(g) R x Z

8. Is the intersection of two countable sets countable? How about
their union?

9. Is the intersection of two uncountable sets uncountable? How
about their union?

10. Let A, B, C, D be sets. Sketch Venn diagrams to illustrate each of
the following:

(a) A U B
(b) A u (B n C)
(c) C \ (B u C)
(d) C\(BnA)
(e) C n (B n A)
(f) Au(BUC)

11. Let A, B, C be sets. Prove each of the following statements:

C\(AUB) = (C \ A) n (C \ B)

C\ (A n B) = (C \ A) U (C \ B).

(Hint: A Venn diagram is not a proof.)

12. Consider the set S = N x N of all ordered pairs of positive integers.
Write the elements of S in an array as follows:

(1,1) (1, 2) (1, 3) ( 1 , 4) (1, 5) .. .
(2,1) (2,2) (2,3) (2,4) (2, 5) ...
(3,1) (3,2) (3,3) (3,4) (3.5) ...
(4,1) (4,2) (4.3) (4,4) (4.5) ...
(5,1) (5,2) (5,3) (5,4) (5,5) ...

Enumerate the pairs by counting along diagonals which extend
from the lower left to the upper right. This gives an alternate way
to prove that N x N is countable.
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13. Prove that if a function f, with domain A and range B, is both
one-to-one and onto then f has an inverse function g.

14. Consider the statement

If x > 2 then x2 > 6.

Explain why the statement is true for x = 3. Explain why the
statement is true for x = 1. Explain why the statement is true for
x = -4. Explain why the statement is false for x = 2.1. Do not
use truth tables!

15. If A1, A2, ... are sets then define

00

H Aj
j=1

to be the collection of all functions from the natural numbers N into
UAj such that f(j) E Aj. What can you say about the cardinality
of the set

00

11Aj
j=1

when each Aj has the cardinality of Z? What about when each of
the Aj has the cardinality of R?

16. Consider the set S of all real numbers obtained by taking rational
powers of rational numbers. Is this set countable or uncountable?

17. A closed subset S of the plane is called convex if whenever a, b E S
then the line segment connecting a to b lies in S. What is the
cardinality of the collection of convex sets in the plane?

18. Give an explicit example of a set which has cardinality greater than
the cardinality of the set of all real numbers and prove that the
cardinality is greater.

19. Prove that it is impossible for a finite set to be put in one-to-one
correspondence with a proper subset of itself.

20. Let S be an infinite set. Prove that there is a subset T C S such
that T is countable.

21. Prove that it is always possible to put an infinite set in one-to-one
correspondence with a proper subset of itself. [Hint: Consider the
natural numbers first. Then use the exercise 20 to treat the general
case.]
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22. What is the cardinality of R x N?

23. What is the cardinality of R x III?

24. Consider the statement

A=B=C.
Write a truth table for this statement. Can you do this without
inserting parentheses? Does your answer depend on where you
insert the parentheses? Discuss the possibilities.

25. Repeat Exercise 24 with replaced by A.

26. Repeat Exercise 24 with replaced by V.

27. Let S be the set of all finite sequences of Os and 1s. Is this set
countable or uncountable?

28. If A is uncountable and B is uncountable then what can you say
about the cardinality of the set if : f is a function from A to B}?
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Number Systems

2.1 The Natural Numbers
Mathematics deals with a variety of number systems. The simplest
number system in real analysis is N, the natural numbers. As we have
already noted, this is just the set of positive integers (1,2,3,. ..}. In
a rigorous course of logic, the set N is constructed from the axioms of
set theory. However, in this book we shall assume that you are familiar
with the positive integers and their elementary properties.

The principal properties of N are as follows

1. 1 is a natural number.

2. If x is a natural number then there is another natural number i
which is called the successor of x.

3. 10 1 for every natural number x.

4.Ifi=ythen x=y.
5. (Principle of Induction) If Q is a property and if

(a) 1 has the property Q;
(b) whenever a natural number x has the property Q it follows

that a also has the property Q;

then all natural numbers have the property Q.

These rules, or axioms, are known as the Peano Axioms for the nat-
ural numbers (named after Giuseppe Peano (1858-1932) who developed
them). We take it for granted that the usual set of positive integers
satisfies these rules. Certainly 1 is in that set. Each positive integer
has a "successor"-after 1 comes 2 and after 2 comes 3 and so forth.
The number 1 is not the successor of any other positive integer. Two
positive integers with the same successor must be the same. The last

39
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axiom is more subtle but makes good sense: if some property Q(n) holds
for n = 1 and if whenever it holds for n then it also holds for n + 1, then
we may conclude that Q holds for all positive integers.

We will spend the remainder of this section exploring Axiom (5),
the Principle of Induction.

Example 2.1

Let us prove that for each positive integer n it holds that

1+2+ +n= 2

We denote this equation by Q(n), and follow the scheme of the
Principle of Induction.

First, Q(1) is true since then both the left and the right
side of the equation equal 1. Now assume that Q(n) is true for
some natural number it. Our job is to show that it follows that
Q(n + 1) is true.

Since Q(n) is true, we know that

n (n+1)1+2+ +n= 2

Let its add the quantity it + 1 to both sides. Thus

1)

2
+(n+1).

The right side of this new equality simplifies and we obtain

1+2+ +(n+1)=
2

But this is just Q(n. + 1) or Q(ii)! We have assumed Q(n) and
have proved Q(n), just as the Principle of Induction requires.

Thus we may conclude that property Q holds for all positive
integers, as desired. 0

The formula that we derived in Example 2.1 was probably known
to the ancient Greeks. However, a celebrated anecdote credits Karl
Friedrich Gauss (1777-1855) with discovering the formula when he was
nine years old. Gauss went on to become (along with Isaac Newton and
Archimedes) one of the three greatest mathematicians of all time.

The formula from Example 2.1 gives a neat way to add up the in-
tegers from 1 to n, for any n, without doing any work. Any time that
we discover a new mathematical fact, there are generally several others
hidden within it. The next example illustrates this point.
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Example 2.2

The sum of the first m positive even integers is m (m+ 1). To
see this note that the sum in question is

But, by the first example, the sum in parentheses on the right
is equal to m (m + 1)/2. It follows that

2+4+6+ +2m=2 m (m + 1)
2

0

The second example could also be performed by induction (without
using the result of the first example). This method is explored in the
exercises.

Example 2.3

Now we will use induction incorrectly to prove a statement that
is completely preposterous:

All horses are the same color.

There are finitely many horses in existence, so it is convenient
for us to prove the slightly more technical statement

Any collection of k horses consists of horses
which are all the same color.

Our statement Q(k) is this last displayed statement.
Now Q(1) is true: one horse is the same color. (Note: this

is not a joke, and the error has not occurred yet. )
Suppose next that Q(k) is true: we assume that any collec-

tion of k horses has the same color. Now consider a collection
of k = k + 1 horses. Remove one horse from that collection. By
our hypothesis, the remaining k horses have the same color.

Now replace the horse that we removed and remove a differ-
ent horse. Again, the remaining k horses have the same color.

We keep repeating this process: remove each of the k + 1
horses one by one and conclude that the remaining k horses
have the same color. Therefore every horse in the collection is
the same color as every other. So all k + 1 horses have the same
color. The statement Q(k + 1) is thus proved (assuming the
truth of Q(k)) and the induction is complete.

Where is our error? It is nothing deep-just an oversight.
The argument we have given is wrong when k = k + 1 = 2.
For remove one horse from a set of two and the remaining (one)



42 Chapter 2: Number Systems

horse is the same color. Now replace the removed horse and
remove the other horse. The remaining (one) horse is the same
color. So what? We cannot conclude that the two horses are
colored the same. Thus the induction breaks down at the outset;
the reasoning is incorrect.

Proposition 2.1 [The Binomial Theorem)
Let a and b be real numbers and n a natural number. Then

(a + b)" = a° + 1 a"-'b + n(2 11) a"-2b2

+ (n(n - 1)(n - 2) ar-3b3
3.2.1

+b.+...+(n
1)(n

Proof: The case n = 1 being obvious, proceed by induction.

REMARK 2.1 The expression

n(n - 1)

k(k - 1)...1

is often called the kth binomial coefficient and is denoted by the symbol

Using the notation m! = m (m - 1) (m - 2) . . 2 1, form a natural
number, we may write the kth binomial coefficient as

n n!

k (n-k)!.k!'

I

2.2 Equivalence Relations and Equivalence Classes
Let S be a set and let R be a relation on S and S. We call 1Z an
equivalence relation on S if R has the following three properties:

(Reflexivity) If s E S then (s, s) E R.

(Symmetry) If (s, t) E R then (t, s) E R.

(Transitivity) If (s, t) E R and (t, u) E R then (s, u) E R.
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Example 2.4
Let A = {1,2,3,4}. The relation

R = {(1, 1), (2,2),(3,3), (4, 4), (1, 4), (4,1), (2, 4), (4, 2), (1, 2), (2, 1)}

is an equivalence relation on A. Check for yourself that reflex-
ivity, symmetry, and transitivity all hold for R. 0

The main result about an equivalence relation on A is that it induces a
partition of A into disjoint sets:

Theorem 2.1
Let R be an equivalence relation on a set A. Then A is a union of subsets
A0,

A=UA0,
a

with the following properties: If a, b E A then (a, b) E 1Z if and only if a
and b are elements of the same A0. The subsets Aa are nonempty and
pairwise disjoint: Aa f A,,, = 0 whenever a 54 a'. The sets A are called
equivalence classes.

Proof: If a E A then define the subset A(a) by

A(a) = {b E A : (a, b) E R} .

Notice that, by the reflexive property of R, a E A(a). So A(a) is not
empty. If a, a' E A and A(a)f1A(a') 54 0 then there is at least one element
common to the two sets: call it c. Then c E A(a) so that (a, c) E R. Also
c E A(a') so that (a', c) E 7Z. Now we invoke the symmetry property
to conclude that (c, a') E R. Since (a, c) E R and (c, a') E R, the
transitivity property implies that (a, a') E 1Z.

Now if b is any element of A(a') then, by definition, (a', b) E R.
We showed in the last paragraph that (a, a') E R. We conclude, by
transitivity, that (a, b) E R. Hence b E A(a). Since b was an arbitrary
element of A(a'), we have shown that A(a') C A(a). The symmetry of
the argument now gives that A(a) C A(a'). Thus A(a) = A(a').

So we know that whenever two sets A(a) and A(a') intersect, they
must be equal. Each of these sets is nonempty. And each a E A is in
one of these sets (namely A(a)). This is what we wanted to prove. 0
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REMARK 2.2 We might have written

A = U A(a).
aEA

But this would be ambiguous, since if a and a' are related then A(a)
and A(a') would be the same set (or equivalence class). The main point
to remember is that an equivalence relation partitions A into disjoint
equivalence classes. We frequently denote these by A(a). But the same
A(a) may arise in several different ways. The examples will make this
point clear.

Example 2.5

Refer to Example 2.4. Notice that

A(1) = {1,2,4} A(2) = 11, 2.41 , A(3) = {3} , A(4) = 11, 2A

Of course A(1), A(2), and A(4) are the same (as the theorem
predicts) because (1, 2), (1, 4), and (2, 4) are elements of R. The
equivalence relation R has partitioned A into the disjoint sub-
sets { 1, 2, 4} and {3}. Notice that

A = 11, 2,4) u {3}

as the theorem specifies.

Example 2.6

Consider the set N of positive integers. Let x. y E N. We say
that x is related to y if y - x is divisible by 2. A moment's
thought reveals that this means that two natural numbers are
related if they are either both even or both odd.

Check for yourself that this is an equivalence relation (re-
flexivity is obvious; if x and y are both even/odd then so are
y and x, giving symmetry; finally, write out the reasoning to
verify transitivity).

The equivalence classes induced by this equivalence relation
are E = 12,4,6....) and 0 = {1,3,5....}. Their union, of
course, is all of N.

2.3 The Integers
Now we will apply the notion of an equivalence class to construct the
integers (both positive and negative). There is an important point of
knowledge to be noted here. For the sake of having a reasonable place to
begin our work, we took the natural numbers N = { 1. 2, 3....} as given.
Since the natural numbers have been used for thousands of years to keep
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track of objects for barter, this is a plausible thing to do. Even people
who know no mathematics accept the positive integers. However, the
number zero and the negative numbers are a different matter. It was
not until the fifteenth century that the concepts of zero and negative
numbers started to take hold-for they do not correspond to explicit
collections of objects (five fingers or ten shoes) but rather to concepts
(zero books is the lack of books; minus 4 pens means that we owe some-
one four pens). After some practice we get used to negative numbers,
but explaining in words what they mean is always a bit clumsy.

It is much more satisfying, from the point of view of logic, to con-
struct the integers (including the negative whole numbers and zero) from
what we already have, that is, from the natural numbers. We proceed
as follows. Let A = N x N, the set of ordered pairs of natural numbers.
We define a relation R on A and A as follows:

(a, b) is related to (a', b') if a + b' = a' + b

Theorem 2.2
The relation 1Z is an equivalence relation.

Proof: That (a, b) is related to (a, b) follows from the trivial identity
a + b = a + b. Hence R is reflexive. Second, if (a, b) is related to (a', b')
then a + b' = a' + b hence a' + b = a + b' (just reverse the equality) hence
(a', b') is related to (a, b). So R is symmetric.

Finally, if (a, b) is related to (a', b') and (a', b') is related to (a", b")
then we have

a+b'=a'+b and a'+b"=a"+b'.

Adding these equations gives

(a+b')+ (a'+b")=(a'+b)+(a"+b').

Cancelling a' and b' from each side finally yields

a + b" = a" + b.

Thus (a, b) is related to (a", b"). Therefore R is transitive. We conclude
that 1Z is an equivalence relation.

Now our job is to understand the equivalence classes which are in-
duced by R. Let (a, b) E A and let [(a, b)] be the corresponding equiv-
alence class. If b > a then we will denote this equivalence class by
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the integer b - a. For instance, the equivalence class [(2, 7)] will be de-
noted by 5. Notice that if (a', b') E [(a, b)] then a + b' = a' + b hence
b' - a' = b - a. Therefore the integer symbol that we choose to represent
our equivalence class is independent of which element of the equivalence
class is used to compute it.

If (a, b) E A and b = a then we let the symbol 0 denote the equiv-
alence class [(a, b)]. Notice that if (a', b') is any other element of [(a, b)]
then it must be that a+ b' = a'+b hence b' = a'; therefore this definition
is unambiguous.

If (a, b) E A and a > b then we will denote the equivalence class
[(a, b)] by the symbol -(a - b). For instance, we will denote the equiv-
alence class [(7, 5)] by the symbol -2. Once again, if (a', b') is related
to (a, b) then the equation a + b' = a' + b guarantees that our choice of
symbol to represent. [(a, b)] is unambiguous.

Thus we have given our equivalence classes names, and these names
look just like the names that we usually give to integers: there are pos-
itive integers, and negative ones, and zero. But we want to see that
these objects behave like integers. (As you read on, use the intuitive,
non-rigorous mnemonic that the equivalence class [(a, b)] stands for the
integer b - a.)

First, do these new objects that we have constructed add correctly?
Well, let X = [(a, b)] and Y = [(c, d)] be two equivalence classes. Define
their sum to be X + Y = [(a + c, b + d)]. We must check that this is
unambiguous. If (a, b) is related to (a, b) and (F, d) is related to (c, d)
then of course we know that

a + b = a + b

and
c+d=F+d.

Adding these two equations gives

(a+c)+(b+d)= (a+F)+(b+d)

hence (a + c, b + d) is related to (aa + F, b + d). Thus, addi rig two of our
equivalence classes gives another equivalence class, as it should.

Example 2.7
To add 5 and 3 we first note that 5 is the equivalence class
[(2, 7)] and 3 is the equivalence class [(2,5)]. We add them com-
ponentwise and find that the sum is [(2 + 2, 7 + 5)] = t(4,12)].
Which equivalence class is this answer? Looking back at our
prescription for giving names to the equivalence classes, we see
that this is the equivalence class that we called 12 - 4 or 8. So
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we have rediscovered the fact that 5 + 3 = 8. Check for yourself
that if we were to choose a different representative for 5-say
(6,11)-and a different representative for 3-say (24, 27)-then
the same answer would result.

Now let us add 4 and -9. The first of these is the equiva-
lence class [(3,7)] and the second is the equivalence class [(13,41).
The sum is therefore [(16, 11)], and this is the equivalence class
that we call -(16 -11) or -5. That is the answer that we would
expect when we add 4 to -9.

Next, we add -12 and -5. Previous experience causes us
to expect the answer to be -17. Now -12 is the equivalence
class [(19,7)] and -5 is the equivalence class [(7,2)]. The sum
is [(26,9)], which is the equivalence class that we call -17.

Finally, we can see in practice that our method of addition
is unambiguous. Let us redo the second example using [(6,10)]
as the equivalence class represented by 4 and [(15,6)] as the
equivalence class represented by -9. Then the sum is [(21,16)],
and this is still the equivalence class -5, as it should be.

The assertion that the result of calculating a sum-no matter which
representatives we choose for the equivalence classes-will give only one
answer is called the "fact that addition is well defined." In order for our
definitions to make sense, it is essential that we check this property of
well-definedness.

REMARK 2.3 What is the point of this section? Everyone knows
about negative numbers, so why go through this abstract construction?
The reason is that, until one sees this construction, negative numbers
are just imaginary objects-placeholders if you will-which are a use-
ful notation but which do not exist. Now they do exist. They are a
collection of equivalence classes of pairs of natural numbers. This col-
lection is equipped with certain arithmetic operations, such as addition,
subtraction, and multiplication. We now discuss these last two.

If x = [(a, b)] and y = [(c, d)] are integers, we define their difference
to be the equivalence class [(a + d, b + c)]; we denote this difference by
x - y. The unambiguity (or well-definedness) of this definition is treated
in the exercises.

Example 2.8

We calculate 8-14. Now 8 = [(1, 9)] and 14 = [(3,17)]. Therefore

8 - 14 = [(1 + 17,9 + 3)] = [(18,12)] = -6,

as expected.
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As a second example, we compute (-4) - (-8). Now

-4 - (-8) _ [(6,2)] - [(13.5)] = [(6 + 5,2 + 13)] = [(11, 15)] = 4.

REMARK 2.4 When we first learn that (-4)-(-8) = (-4)+8 = 4,
the explanation is a bit mysterious: why is "minus a minus equal to a
plus"? Now there is no longer any mystery: this property follows from
our construction of the number system Z. I

Finally, we turn to multiplication. If x = [(a, b)] and y = [(c. d)] are
integers then we define their product by the formula

X. y=

This definition may be a surprise. Why did we not define x - y to be
[(a - c, b - d)]? There are several reasons: first of all, the latter definition
would give the wrong answer; moreover, it is not unambiguous (different
representatives of x and y would give a different answer). If you recall
that we think of [(a, b)] as representing b - a and [(c, d)] as representing
d - c then the product should be the equivalence class that represents
(b - a) - (d - c). That is the motivation behind our definition.

The unambiguity of the given definition of multiplication of integers
is treated in the exercises. We proceed now to an example.

Example 2.9

We compute the product of -3 and -6. Now

(-3)-(-6) = [(5.2)j-[(9,3)) = [(5-3+2-9,5-9+2-3)] = [(33, 51)] = 18,

which is the expected answer.
As a second example, we multiply -5 and 12. We have

-5.12 = [(7,2)).[(1, 13)] = [(7-13+2.1,7-1+2-13)] = [(93, 33)] = -60.

Finally, we show that 0 times any integer A equals zero. Let
A = [(a, b)]. Then

0-A= [(1,1)] [(a,b)] = [(1 b+1 a,I -a+1-b)]
_ [(a+b,a+b)]
=0.

REMARK 2.5 Notice that one of the pleasant byproducts of our
construction of the integers is that we no longer have to give artificial
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explanations for why the product of two negative numbers is a positive
number or why the product of a negative number and a positive num-
ber is negative. These properties instead follow automatically from our
construction.

Of course we will not discuss division for integers; in general division
of one integer by another makes no sense in the universe of the integers.
More will be said about this matter in the exercises.

In the rest of this book we will follow the standard mathematical
custom of denoting the set of all integers by the symbol Z. We will
write the integers not as equivalence classes, but in the usual way as
... - 3, -2, -1, 0,1, 2, 3, .... The equivalence classes are a device that we
used to construct the integers. Now that we have the integers in hand,
we may as well write them in the simple, familiar fashion.

In an exhaustive treatment of the construction of Z, we would prove
that addition and multiplication are commutative and associative, prove
the distributive law, and so forth. But the purpose of this section is to
demonstrate modes of logical thought rather than to be thorough. We
shall say more about some of the elementary properties of the integers
in the exercises.

2.4 The Rational Numbers
In this section we use the integers, together with a construction using
equivalence classes, to build the rational numbers. Let A be the set
Z x (Z \ {0}). Here the symbol \ stands for "subtraction of sets": Z \
{0} denotes the set of all elements of Z except 0 (see Section 1.6). In
other words, A is the set of ordered pairs (a, b) of integers subject to
the condition that b j4 0. [Think, intuitively and non-rigorously, of this
ordered pair as "representing" the fraction a/b.] We definitely want it to
be the case that certain ordered pairs represent the same number. For
instance,

The number z should be the same number as s

This example motivates our equivalence relation. Declare (a, b) to be
related to (a', b') if a b' = a' b. [Here we are thinking, intuitively
and non-rigorously, that the fraction a/b should equal the fraction a'/b'
precisely when a b' = a' b.]

Is this an equivalence relation? Obviously the pair (a, b) is related
to itself, since a b = a b. Also the relation is symmetric: if (a, b) and
(a', b') are pairs and a b' = a' b then a' b = a Y. Finally, if (a, b) is
related to (a', b') and (a', b') is related to (a", b") then we have both

and a'b"=a"b'.
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Multiplying the left sides of these two equations together and the right
sides together gives

(a' b) -

If a' = 0 then it follows immediately that both a and a" must be zero.
So the three pairs (a, b), (a', b'), and (a", b") are equivalent and there is
nothing to prove. So we may assume that a' # 0. We know a priori that
b' # 0; therefore we may cancel common terms in the last equation to
obtain

Thus (a, b) is related to (a", b"), and our relation is transitive.
The resulting collection of equivalence classes will be called the set

of rational numbers, and we shall denote this set with the symbol Q.

Example 2.10

The equivalence class [(4,12)) in the rational numbers contains
all of the pairs (4,12),(1,3),(-2,-6). (Of course it contains
infinitely many other pairs as well.) This equivalence class rep-
resents the fraction 4/12 which we sometimes also write as 1/3
or -2/(-6). 0

If [(a, b)] and [(c, d)] are rational numbers then we define their prod-
uct to be the rational number

This is well defined, for if (a, b) is related to (a, b) and (c, d) is related
to (c, d) then we have the equations

and c.d=i.d .

Multiplying together the left sides and the right sides we obtain

(a - b). (c - d)= (a.

Rearranging, we have

But this says that the product of [(a, b)] and [(c. d)] is related to the
product of [(a, b)] and So multiplication is unambiguous (i.e.,
well defined).



2.4 The Rational Numbers 51

Example 2.11

The product of the two rational numbers [(3,8)] and [(-2,5)] is

[(3.(-2),8 - 5)] = [(-6,40)] = [(-3,20)].

This is what we expect: the product of 3/8 and -2/5 is -3/20.
0

If q = [(a, b)] and r = [(c, d)] are rational numbers and if r is not
zero (that is, [(c, d)] is not the equivalence class zero-in other words,
c # 0) then we define the quotient q/r to be the equivalence class

[(ad, bc)] .

We leave it to you to check that this operation is well defined.

Example 2.12

The quotient of the rational number [(4,7)] by the rational num-
ber [(3, -2)] is, by definition, the rational number

[(4.(-2),7 - 3)] = [(-8,21)].

This is what we expect: the quotient of 4/7 by -3/2 is -8/(21).
0

How should we add two rational numbers? We could try declaring
[(a, b)] + [(c, d)] to be [(a + c, b + d)], but this will not work (think about
the way that we usually add fractions). Instead we define

[(a,b)]+[(c,d)]=

That this definition is unambiguous is left for the exercises. We turn
instead to an example.

Example 2.13

The sum of the rational numbers [(3, -14)] and [(9,4)] is given
by

[(3.4 + 9 (-14), (-14) 4)] = [(-114, -56)] = [(57,28)].

This coincides with the usual way that we add fractions :

3 957
44+4

_
28

0



52 Chapter 2: Number Systems

Notice that the equivalence class [(0, 1)] is the rational number that
we usually denote by 0. It is the additive identity, for if [(a, b)] is another
rational number then

[(0. 1)] + [(a, b)] = [(0 - b + a - 1, 1 - b)] = [(a, b)).

A similar argument shows that [(0, 1)] times any rational number gives
[(0,1)] or 0.

Of course the concept of subtraction is really just a special case of
addition (that is x - y is the same thing as x + (-y)). So we shall say
nothing further about subtraction.

In practice we will write rational numbers in the traditional fashion:

2 -19 22 24

5
, 3 , 2 ,

4
...

In mathematics it is generally not wise to write rational numbers in
mixed form, such as 2

5
, because the juxtaposition of two numbers could

easily be mistaken for multiplication. Instead we would write this quan-
tity as the improper fraction 13/5.

Definition 2.1 A set S is called a field if it is equipped with a binary
operation (usually called addition and denoted "+") and a second binary
operation (called multiplication and denoted "-") such that the following
axioms are satisfied:

Al. S is closed under addition: if x, y E S then x + y E S.

A2. Addition is commutative: if x, y E S then x + y = y + x.

A3. Addition is associative: if x, y, z E S then x + (y + z) = (x+y)+z.

A4. There exists an element, called 0, in S which is an additive identity:
if x E S then 0 + x = x.

A5. Each element of S has an additive inverse: if x E S then there is
an element -x E S such that x + (-x) = 0.

M1. S is closed under multiplication: if x, y E S then x - y E S.

M2. Multiplication is commutative: if x, y E S then x - y = y x.

M3. Multiplication is associative: if x, y, z E S then x - (y- z) = (x y) - z.

M4. There exists an element, called 1, which is a multiplicative identity:
ifx.ESthen x1=x.
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M5. Each nonzero element of S has a multiplicative inverse: if 0 76 x E
S then there is an element x-1 E S such that x (x-1) = 1. The
element x-1 is sometimes denoted 1/x.

D1. Multiplication distributes over addition: if x, y, z E S then

Eleven axioms is a lot to digest all at once, but in fact these are all
familiar properties of addition and multiplication of rational numbers
that we use every day: the set Q, with the usual notions of addition and
multiplication, forms a field. The integers, by contrast, do not: nonzero
elements of Z (except 1 and -1) do not have multiplicative inverses in
the integers.

Let us now consider some consequence of the field axioms.

Theorem 2.3
Any field has the following properties:

(1) Ifz+x=z+ythenx=y.
(2) If x + z = 0 then z = -x (the additive inverse is unique).

(3) -(-y) = y.

(4)

If y y z = 1 then z = y-' (the multiplicative inverse is
unique).

(6) (x-1)-1 = x.

(7)

(8) then eitherx=Dory=0.

(9) (-x) . y = -(x . y) = x . (-y).

(10) (-x) (-y) = x Y.

Proof: These are all familiar properties of the rationals, but now we are
considering them for an arbitrary field. We prove just a few to illustrate
the logic. The proofs of the others are assigned as exercises.

To prove (1) we write

(-z)+(z+x)=(-z)+(z+y)
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and now Axiom A3 yields that this implies

((-z) + z) + x = ((-z) + z) + y .

Next, Axiom A5 yields that

0+x=0+y

and hence, by Axiom A4,
x=y.

To prove (7), we observe that

which by Axiom M2 equals

x (0 + 0).

By Axiom D1 the last expression equals

which by Axiom M2 equals 0 - x + 0 - x. Thus we have derived the
equation

Axioms A4 and A2 let us rewrite the left side as

Finally, part (1) of the present theorem (which we have already
proved) yields that

0=0-x,
which is the desired result.

To prove (8), we suppose that x # 0. In this case x has a multi-
plicative inverse x-1 and we multiply both sides of our equation by this
element:

X-' =x-1 . 0.

By Axiom M3, the left side can be rewritten and we have

(x.

Next, we rewrite the right side using Axiom M2:

(x.x-1).y=0-x-1-
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Now Axiom M5 allows us to simplify the left side:

1-y=0-x-1.

We further simplify the left side using Axiom M4 and the right side
using Part (7) of the present theorem (which we just proved) to obtain:

y=0.

Thus we see that if x 36 0 then y = 0. But this is logically equivalent
with x = 0 or y = 0, as we wished to prove. [If you have forgotten why
these statements are logically equivalent, write a truth table.] 0

Definition 2.2 Let A be a set. We shall say that A is ordered if
there is a relation R on A and A satisfying the following properties

1. If a E A and b E A then one and only one of the following holds:
(a, b) E R or (b, a) E R or a = b.

2. If a, b, c are elements of A and (a, b) E R and (b, c) E R then
(a, c) E R.

We call the relation R an order on A.

Rather than write an ordering relation as (a, b) E R it is usually
more convenient to write it as a < b. The notation b > a means the
same thing as a < b.

Example 2.14
The integers Z form an ordered set with the usual ordering <.
We can make this ordering precise by saying that x < y if y - x
is a positive integer. For instance,

6<8 because 8-6=2>0.

Likewise,

-5<-1 because -1-(-5)=4>0.
Observe that the same ordering works on the rational numbers.
0

If A is an ordered set and a, b are elements then we often write a < b
to mean that either a = b or a < b.

When a field has an ordering which is compatible with the field
operations then a richer structure results:
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Definition 2.3 A field F is called an ordered field if F has an ordering
< that satisfies the following addition properties:

(1) Ifx,y,zEFandy<zthenx+y<x+z.
(2)

Again, these are familiar properties of the rational numbers: Q forms
an ordered field. But there are many other ordered fields as well (for
instance, the real numbers JR form an ordered field).

Theorem 2.4
Any ordered field has the following properties:

(1) Ifx>Oandz<ythen x

(2) If x < 0 and z < y then x

(3) If x, > 0 then -x < 0. Ifx < 0 then -x > 0.

(4) If0<y<x then 0<1/s<1/y.

(5) If x#0 then x 2 > 0.

(6) If0<x<y then x2<y2.

Proof: Again we prove just a few of these statements and leave the rest
as exercises.

To prove (1), observe that the property (1) of ordered fields together
with our hypothesis implies that

(-z) + z < (-z) + Y.

Thus, using (A2), we see that y - z > 0. Since x > 0, property (2) of
ordered fields gives

x.(y-z)>0.
Finally,

x y=x. [(y-z)+z] =x
(by property (1) again). In conclusion,

To prove (3), begin with the equation

0=-x+x.
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Since x > 0, the right side is greater than -x. Thus 0 > -x as claimed.
The proof of the other statement of (3) is similar.

To prove (5), we consider two cases. If x > 0 then x2 = x x is
positive by property (2) of ordered fields. If x < 0 then -x > 0 (by part
(3) of the present theorem, which we just proved) hence (-x) (-x) > 0.
But part (10) of the last theorem guarantees that (-x) (-x) = x x
hence we see that x x > 0.

We conclude this section by recording an inadequacy of the field of
rational numbers; this will serve in part as motivation for learning about
the real numbers in the next section:

Theorem 2.5
There is no positive rational number q such that q2 = q q = 2.

Proof: Seeking a contradiction, suppose that there is such a q. Write q
in lowest terms as

a

q = b'

with a and b greater than zero. This means that the numbers a and b
have no common divisors except 1. The equation q2 = 2 can then be
written as

Since 2 divides the right side of this last equation, it follows that 2
divides the left side. But 2 can divide a2 only if 2 divides a (because 2
is prime). We write a = 2 a for some positive integer a. But then the
last equation becomes

Simplifying yields that

2 divides the left side, we conclude that 2 must divide the right
side. But 2 can divide b2 only if 2 divides b.

This is our contradiction: we have argued that 2 divides a and that
2 divides b. But a and b were assumed to have no common divisors. We
conclude that the rational number q cannot exist.

In fact it turns out that a positive integer can be the square of a
rational number if and only if it is the square of a positive integer. This
assertion is explored in Exercise 36. It is a special case of a more general
phenomenon in number theory known as Gauss's lemma.
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2.5 The Real Numbers
Now that we are accustomed to the notion of equivalence classes, the
construction of the integers and of the rational numbers seems fairly nat-
ural. In fact equivalence classes provide a precise language for declaring
certain objects to be equal or equivalent. We can now use the integers
and the rationals as we always have done, with the added confidence
that they are not simply a useful notation but that they have been con-
structed.

We turn next to the real numbers. We know from calculus that for
many purposes the rational numbers are inadequate. It is important to
work in a number system which is closed with respect to the operations
we shall perform. This includes limiting operations. While the rationale
are closed under the usual arithmetic operations, they are not closed
under the mathematical operation of taking limits. For instance, the
sequence of rational numbers 3, 3.1, 3.14, 3.141, ... consists of terms that
seem to be getting closer and closer together, seem to tend to some limit,
and yet there is no rational number which will serve as a limit (of course
it turns out that the limit is 7r-an "irrational" number).

We will now deal with the real number system, a system which
contains all limits of sequences of rational numbers (as well as all limits
of sequences of real numbers!). In fact our plan will be as follows: in
this section we shall discuss all the requisite properties of the reals. The
actual construction of the reals is rather complicated, and we shall put
that in an Appendix to this chapter.

Definition 2.4 Let A be an ordered set and X a subset of A. The
set X is called bounded above if there is an element b E A such that
x < b for all x E X. We call the element b an upper bound for the set X.

Example 2.15

Let A = Q with the usual ordering. The set X = {x E Q
2 < x < 4} is bounded above. For example 15 is an upper
bound for X. So are the numbers 12 and 4. It is interesting to
observe that no element of this particular X can actually be an
upper bound for X. The number 4 is a good candidate, but 4
is not an element of X. In fact if b E X then (b + 4)/2 E X and
b < (b + 4)/2, so b could not be an upper bound for X. 0

It turns out that the most convenient way to formulate the notion
that the real numbers have "no holes" (i.e. that all sequences which seem
to be converging actually have something to converge to) is in terms of
upper bounds.
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Definition 2.5 Let A be an ordered set and X a subset of A. An
element b E A is called a least upper bound (or supremum) for X if b is
an upper bound for X and there is no upper bound b' for X which is
less than b.

By its very definition, if a least upper bound exists then it is unique.

Example 2.16

In the last example, we considered the set X of rational numbers
strictly between 2 and 4. We observed there that 4 is the least
upper bound for X. Note that this least upper bound is not an
element of the set X.

The set Y = {y E Z : -9 < y < 7} has least upper bound
7. In this case, the least upper bound is an element of the set
Y.

Notice that we may define a lower bound for a subset of an ordered
set in a fashion similar to that for an upper bound: I E A is a lower
bound for X C A if e < x for all x E X. A greatest lower bound (or
infimum) for X is then defined to be a lower bound a such that there is
no lower bound e' with e' > I.

Example 2.17

The set X in the last two examples has lower bounds -20, 0, 1,
2, for instance. The greatest lower bound is 2, which is not an
element of the set.

The set Y in the last example has lower bounds-among
others-given by -53,-22,-10,-9. The number -9 is the
greatest lower bound. It is an element of Y.

The purpose that the real numbers will serve for us is as follows:
they will contain the rationals, they will still be an ordered field, and
every subset which has an upper bound will have a least upper bound.
We formulate this result as a theorem.

Theorem 2.6
There exists an ordered field R which (i) contains Q and (ii) has the
property that any nonempty subset of R which has an upper bound has
a least upper bound (in the number system R).

The last property described in this theorem is called the Least Upper
Bound Property of the real numbers. As mentioned previously, this
theorem will be proved in the Appendix to the chapter. Now we begin
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to realize why it is so important to construct the number systems that
we will use. We are endowing R with a great many properties. Why
do we have any right to suppose that there exists a set with all these
properties? We must produce one! We do so in the Appendix to this
chapter.

Let us begin to explore the richness of the real numbers. The next
theorem states a property which is certainly not shared by the rationals
(see Theorem 2.5). It is fundamental in its importance.

Theorem 2.7
Let x be a real number such that x > 0. Then there is a positive real
number y such that y2 = y y = X.

Proof: We will use throughout this proof the fact (see Part (6) of
Theorem 2.4) that if 0 < a < b then a2 < b2.

Let
S={sEAB:s>0 and s2<x}.

Then S is not empty since x/2 E S if x < 2 and 1 E S otherwise.
Also S is bounded above since x + 1 is an upper bound for S. By
Theorem 2.6, the set S has a least upper bound. Call it y. Obviously
0 < min{x/2, 1} < y hence y is positive. We claim that y2 = x. To see
this, we eliminate the other two possibilities.

If y2 <x then set e=(x-y2)/(4(x+1)J. Then f > 0 and

2
x_ y2 x-y2

2 - x-y2
- y + y

4(x +1) + 4(x + 1) 4(x + 1)

2
x-y2 x-y2

2
x-y2

< y + y
4y + 4 ( + 1 ) 4 ( + 1 )

x-y2 x-y2 x<y2+
2 + 4 4x

<y2+(x-y2)
= X.

Thus y+e E S, and y cannot be an upper bound for S. This contradiction
tells us that y2 14 X.

Similarly, if it were the case that y2 > x then we set c = (y2 -
x)/(4(x + 1)]. A calculation like the one we just did (see Exercise 27)
then shows that (y - E)2 > x. Hence y - e is also an upper bound for S,
and y is therefore not the least upper bound. This contradiction shows
that y2 L X.
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The only remaining possibility is that y2 = X.

A similar proof shows that if n is a positive integer and x a positive
real number then there is a positive real number y such that y" = x.
Exercise 35 asks you to provide the details.

We next use the Least Upper Bound Property of the Real Numbers
to establish two important qualitative properties of the Real Numbers:

Theorem 2.8
The set R of real numbers satisfies the Archimedean Property:

Let a and b be positive real numbers. Then there is a natural
number n such that na > b.

The set Q of rational numbers satisfies the following Density Property:

Let c < d be real numbers. Then there is a rational number
q withc<q<d.

Proof: Suppose the Archimedean Property to be false. Then S = (na :
n E N} has b as an upper bound. Therefore S has a finite supremum /3.
Since a > 0, it follows that 0 - a < /3. So ,6 - a is not an upper bound
for S, and there must be a natural number n' such that n' a > /0 - a.
But then (n' + 1)a > /3, and 0 cannot be the supremum for S. This
contradiction proves the first assertion.

For the second property, let A = d - c > 0. By the Archimedean
Property, choose a positive integer N such that N \ > 1. Again the
Archimedean Property gives a natural number P such that P > N c
and another Q such that Q > -N c. Thus we see that Nc falls between
the integers -Q and P; therefore there must be an integer M between
-Q and P such that

M-1<Nc<M.
Thus c < Al/N. Also

M<Nc+l hence N <c+N <c+A=d.

So M/N is a rational number lying between c and d.

Recall that in Example 1.44 in Section 1.8 we established that the
set of all decimal representations of numbers is uncountable. It follows
that the set of all real numbers is uncountable. In fact the same proof
shows that the set of all real numbers in the interval (0,1), or in any
nonempty open interval (c, d), is uncountable.
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The set R of real numbers is uncountable, yet the set Q of rational
numbers is countable. It follows that the set R \ Q of irrational numbers
is uncountable. In particular, it is nonempty. Thus we may see with very
little effort that there exist a great many real numbers which cannot be
expressed as a quotient of integers. However, it can be quite difficult
to see whether any particular real number (such as 7r or e or Y2) is
irrational.

We conclude by recalling the "absolute value" notation:

Definition 2.6 Let x be a real number. We define

Ix if x>O
IxI= 0 if x=0

-x if x < 0

It is left as an exercise for you to verify the important triangle in-
equalit y.

Ix + yI < IxI + 1yI

[Do this by dividing into cases: (i) x > 0 and y > 0. (ii) x > 0 and
y < 0, (iii) x < 0 and y > 0, etc.]

2.6 The Complex Numbers
When we first learn about the complex numbers, the most troublesome
point is the very beginning: "Let's pretend that the number -1 has a
square root. Call it i." What gives us the right to "pretend" in this
fashion? The answer is that we have no such right.' If -1 has a square
root, then we should be able to construct a number system in which that
is the case. That is what we shall do in this section.

Definition 2.7 The system of complex numbers, denoted by the
symbol C, consists of all ordered pairs (a, b) of real numbers. We add
two complex numbers (a, b) and (a`., b) by the formula

(a,b)+(a,b) _ (a+a,b+b).

We multiply two complex numbers by the formula

'One of the reasons, historically, that mathematicians had trouble accepting the
complex numbers is that they did not believe that they really existed. This is, in
part, how they came to be called "imaginary." Mathematicians had similar trouble
accepting negative numbers; for a time, negative numbers were called "forbidden."
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REMARK 2.6 If you are puzzled by this definition of multiplication,
do not worry. In a few moments you will see that it gives rise to the
notion of multiplication of complex numbers that you are accustomed
to. Perhaps more importantly, a naive rule for multiplication like (a, b)
(a, b) = (aa, bb) gives rise to nonsense like (1, 0) (0,1) _ (0, 0). It is
really necessary for us to use the initially counterintuitive definition of
multiplication that is presented here. I

Example 2.18

Let z = (3, -2) and w = (4,7) be two complex numbers. Then

z + w = (3,-2) + (4,7) = (3 + 4,-2 + 7) = (7, 5) .

Also

11

As usual, we ought to check that addition and multiplication are
commutative, associative, that multiplication distributes over addition,
and so forth. We shall leave these tasks to the exercises. Instead we
develop some of the crucial, and more interesting, properties of our new
number system.

Theorem 2.9
The following properties hold for the number system C.

(a) The number 1 =- (1, 0) is the multiplicative identity: 1 z = z for
anyzEC.

(b) The number 0 = (0, 0) is the additive identity: 0 + z = z for any
z E C.

(c) Each complex number z = (x, y) has an additive inverse
-z = (-x, -y): it holds that z + -z = 0.

(d) The number i =- (0,1) satisfies i i = -1; in other words, i is a
square root of -1.

Proof: These are direct calculations, but it is important for us to work
out these facts.

First, let z = (x, y) be any complex number. Then

1z=(1,0)(x,y)=(1 x-0y,ly+x0)=(x,y)=z.
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This proves the first assertion.
For the second, we have

0+z=(0.0)+(x,y)=(0+x,0+y)=(x,y)=z.

With z as above, set -z = (-x, -y). Then

z + (-z) = (x, y) + (-x. -y) = (x + (-x), y + (-y)) _ (0, 0) = 0.

Finally, we calculate

i a square root of -1.

Proposition 2.2
If z E C, z 54 0, then there is a complex number w such that z - w = 1.

Proof: Write z = (x, y) and set

w=
y2(x+y' x2

-y
+

Since z 0, this definition makes sense. Then it is straightforward to
verify that z w = 1.

Thus every nonzero complex number has a multiplicative inverse.
The other field axioms for C are easy to check. We conclude that the
number system C forms a field. You will prove in the exercises that it is
not possible to order this field. If a is a real number then we associate a
with the complex number (a, 0). Thus we have the natural "embedding"

R3 a- (a,0)EC.

In this way, we can think of the real numbers as a subset of the complex
numbers. In fact, the real field R is a subfield of the complex field
C. This means that if a,,3 E R and (a. 0), ([3, 0) are the corresponding
elements in C then a +;3 corresponds to (a +,3, 0) and a 0 corresponds
to (a, 0) ()3, 0). These assertions are explored more thoroughly in the
exercises.

With the remarks in the preceding paragraph we can sometimes ig-
nore the distinction between the real numbers and the complex numbers.
For example, we can write

5 i
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and understand that it means (5, 0) (0,1) = (0, 5). Likewise, the ex-
pression

5.1

can be interpreted as 5. 1 = 5 or as (5, 0) (1, 0) = (5, 0) without any
danger of ambiguity.

Theorem 2.10
Every complex number can be written in the form a + b i, where a and
b are real numbers. In fact, if z = (x, y) E C then

Proof: With the identification of real numbers as a subfield of the
complex numbers, we have that

x+y.i= (x,0)+(y,0) (0, 1) = (x,0)+(0,y) = (x,y) = z

as claimed. 0

Now that we have constructed the complex number field, we will
adhere to the usual custom of writing complex numbers as z = a + b i
or, more simply, a + bi. We call a the real part of z, denoted by Re z,
and b the imaginary part of z, denoted Im z. We have

(a+bi)+(a+Ti) = (a+a)+(b+b)i

and

If z = a+bi is a complex number then we define its complex conjugate
to be the number z = a - bi. We record some elementary facts about
the complex conjugate:

Proposition 2.3
If z, w are complex numbers then

1. z+w=z+w;
2.

z .7 ? 0, with equality holding if and only if z = 0.
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Proof: Write z = a + bi, w = c + di. Then

z+w=(a+c)+(b+d)i
= (a + c) - (b + d)i
= (a - bi) + (c - di)
=z+u+.

This proves (1). Assertions (2), (3), (4) are proved similarly.
For (5), notice that

z

Clearly equality holds if and only if a = b = 0.

The expression Izi is defined to be the nonnegative square root of
z z:

IzI=+
It is called the modulus of z and plays the same role for the complex
field that absolute value plays for the real field. It is the distance of z
to the origin. The modulus has the following properties.

Proposition 2.4
If z, w EC then

(1) IzI = Izl;

(2) Iz wI = IzI . Iu'I;

(3) IRe zl < IzI , IIm zj < IzI;

(4) Iz+wl < IzI+Iwi;

Proof: Write z = a + bi, w = c + di. Then (1), (2), (3) are immediate.
For (4) we calculate that

I z + w12 = (z + w) (7-+W)
=z

Iz12+2Iz.u1+111712

= Iz12 + 21z1. IwI + IwI2

_ (IzI + Iwi)2.

Taking square roots proves (4).
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Observe that if z is real then z = a + Oi and the modulus of z
equals the absolute value of a. Likewise, if z = 0 + bi is pure imaginary,
then the modulus of z equals the absolute value of b. In particular, the
fourth part of the proposition reduces, in the real case, to the triangle
inequality

Ix+yI _fxI+IyI

Exercises
1. Consider the following alternative form of the Principle of Induc-

tion: Let Q be a property which may or may not hold for all of
the natural numbers N. Assume that 1 has the property Q, and
that whenever j has the property Q for 1 < j < n then n has the
property Q; then it follows that every natural number n has the
property Q.
Prove that this form of the induction principle (called strong in-
duction) is equivalent to the one discussed in the text.

2. Use induction to derive the fact that the sum of the squares of the
first n natural numbers is equal to

2n3+3n2+n
6

3. Use induction to establish a formula for the sum of the cubes of
the first n natural numbers.

4. Use induction to show that if S is a set with N elements then the
number of subsets of S is 2N. (Hint: Do not forget the empty set!)

5. Use induction to show that the sum of the first m positive even
integers is equal to m (m + 1).

6. Consider finitely many circles in the plane, possibly of different
radii, and intersecting each other. These curves separate the plane
into finitely many different regions.

Prove, using induction, that these regions can always be colored
red, blue or yellow, so that no two regions sharing a nontrivial
common boundary curve will be the same color.

7. Let S = {a, b, c}. List all possible equivalence relations on the set
S.

* S. The Well Ordering Principle, as applied to the natural numbers
N, says the following:
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If S is a nonempty subset of N then S has a least element.

Here s E S is said to be a least element if for any x E S it holds
that s < x.
Assume that the natural numbers satisfy the Well Ordering Prin-
ciple (this is in fact true, but further explanation requires more
set theory and logic than we can cover here). If S C N then prove
that the least element of S is unique.

Show that the Well Ordering Principle implies the Induction Prin-
ciple. (Hint: Assume the hypotheses of the Induction Principle. If
it is not the case that Q(x) is true for all x E N then let S be the
set of x for which Q(x) is false. By Well Ordering, S has a least
element S. This leads to a contradiction.)

9. Here is an old problem which can be found in many puzzle books:
You are given nine pearls. All of these pearls except one have the
same weight. Using just a balance scale, find the odd pearl in just
three weighings.

You might try your hand at this for fim. Now here is a bogus proof
that you can find the odd pearl among any finite number of pearls
in just three weighings:

If there are n = 1 pearls then the problem is trivial.

Assume that the problem has been solved for n pearls.

To solve the problem for n + 1 pearls, remove one pearl and
put it in your pocket. Since you have solved the problem for n
pearls, you can apply this solution to the remaining n pearls.
If it works and you find the odd pearl, you are done. If not,
the odd pearl is the one that you placed in your pocket.

What is wrong with this reasoning? (Hint: The error here is quite
different from the one in the third example in the text.)

10. Let f be a function with domain the reals and range the reals.
Assume that f has a local minimum at each point x in its domain.
(This means that for each x E R there is an e > 0 such that
whenever I x - t I< e then f (x) < f (t) ). Do not assume that f is
differentiable, or continuous, or anything nice like that. Prove that
the image of f is countable. (Hint: When I solved this problem
as a student my solution was ten pages long; however there is a
one-line solution due to Michael Spivak.)

11. Let S be the set of all living people. Tell which of the following are
equivalence relations on S. Give detailed reasons for your answers.
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x is related to y if x and y are siblings

x is related toy if y is presently a spouse of x
x is related to y if y has at one time or another been a spouse
of x

x is related to y if y is a parent of x
x is related toy if y is a child of x

12. Let S be the set of all integers. Say that x is related to y if 3
divides y - x. Is this an equivalence relation on S? What if 3 is
replaced by some other nonzero integer n?

13. Let S be the collection of all polynomials with real coefficients.
Say that p is related to q if the number 0 is a root of p - q. Is this
an equivalence relation on S?

14. Let S be the set of all subsets of the real numbers. Say that X E S
is related to Y E S if card(X) = card(Y). Is this an equivalence
relation on S?

15. Let S be the set of all pairs of real numbers (x, y) with y 0 0.
Declare two pairs (x, y) and (x', y') to be related if x y' = x' y.
Let the set of all equivalence classes be called R. Emulating the
construction of the rational numbers, define notions of addition
and multiplication on R. Set up a natural bijection between R and
R which respects the operations of multiplication and addition.

What conclusion do you draw from this exercise?

16. Perform Exercise 15 with R replaced by the complex numbers.

17. Imitate the proof of the unambiguity of addition in the integers to
establish the unambiguity of subtraction and multiplication.

18. Let x = ((a, b)] bean integer. Define IxI to be b - a if b > a, a - b if
a > b, and 0 otherwise. Prove that this definition is unambiguous.

Prove that if x and y are integers and IxI > IyJ then there is no
nonzero integer z such that x z = y.

19. Take the commutativity and associativity of addition and multi-
plication in the natural number system for granted. That is, if
x,y,zENthen
x. (y z) = (x. y) z, x (y + z) = x y + x z. Prove corresponding
properties for addition and multiplication of integers.

20. Prove that addition of rational numbers is unambiguous.

21. Prove the parts of Theorem 2.3 which were not proved in the text.
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22. Prove parts (2), (4), and (6) of Theorem 2.4.

23. Let A be a set of real numbers that is bounded above and set
a = sup A. Let B = {-a: a E A}. Prove that inf B = -a. Prove
the same result with the roles of infimum and supremum reversed.

24. Taking the commutative, associative, and distributive laws for the
real number system for granted, establish these laws for the com-
plex numbers.

25. Consider the function : R -+ C given by O(x) = x + i - 0. Prove
that 0 respects addition and multiplication in the sense that O(x+
x') = O(x) + ¢(x') and O(x - x') = 0(x) - O(x').

26. If z, w E C then prove that z/w = `z/`w.

27. Complete the calculation in the proof of Theorem 2.7.

28. Prove that the set of all complex numbers is uncountable.

29. Prove that the set of all complex numbers with rational real part
is uncountable.

30. Prove that the set of all complex numbers with both real and
imaginary parts rational is countable.

31. Prove that the set {z E C : Izi = 1} is uncountable.

32. Prove that the field of complex numbers cannot be made into an
ordered field. (Hint: Since i # 0 then either i > 0 or i < 0. Both
lead to a contradiction.)

33. Let A be a positive irrational real number. If n is a positive integer,
choose by the Archimedean Property an integer k such that kA <
n < (k + I)A. Let V(n) = n - U. Prove that the set of all cp(n.) is
dense in the interval [0, A]. (Hint: Examine the proof of the density
of the rationale in the reals.)

34. Prove the last statement of Section 5 without using results from
later in the chapter.

35. Let n be a natural number and x a positive real number. Prove
that there is a positive real number y such that y" = x. Is y
unique?

*

36. Prove that if n is a positive integer that is the square of a rational
number then in fact it is the square of an integer.
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APPENDIX: Construction of the Real Numbers
There are several techniques for constructing the real number system R
from the rational numbers system Q. We use the method of Dedekind
(Julius W. R. Dedekind, 1831-1916) cuts because it uses a minimum of
new ideas and is fairly brief.

Definition 2.8 A cut is a subset C of Q with the following properties:

C540

IfsECandt<sthentEC
IfsECthenthereisauECsuchthatu>s
There is a rational number x such that c < x for all c E C

You should think of a cut C as the set of all rational numbers to the left
of some point in the real line. Since we have not constructed the real
line yet, we cannot define a cut in that simple way; we have to make the
construction more indirect. But if you consider the three properties of
a cut, they describe a set that looks like a "rational half-line."

Notice that if C is a cut and s $ C then any rational t > s is also
not in C. Also, if r E C and s it Cthen itmust bethat s>r.

Definition 2.9 If C and V are cuts then we say that C < D provided
that C is a subset of V but C 94 D.

Check for yourself that "<" is an ordering on the set of all cuts.
Now we introduce operations of addition and multiplication which

will turn the set of all cuts into a field.

Definition 2.10 If C and V are cuts then we define

C+D={c+d:cEC,dED}.

We define the cut 6 to be the set of all negative rationals.

The cut 0 will play the role of the additive identity. We are now
required to check that field axioms Al-A8 hold.

For Al, we need to see that C + D is a cut. Obviously C + D is not
empty. If s is an element of C + D and t is a rational number less than
s, writes =c+d, where cECanddEV.Then t-c<s-c=dED
sot - c E D; and c E C. Hence t = c + (t - c) E C + D . A similar
argument shows that there is an r > s such that r E C + D . Finally, if
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x is a rational upper bound for C and y is a rational upper bound for D,
then x + y is a rational tipper bound for C + D. We conclude that C + D
is a cut.

Since addition of rational numbers is commutative, it follows imme-
diately that addition of cuts is commutative. Associativity follows in a
similar fashion.

Now we show that if C is a cut then C + 0 = C. For if c E C and
z E 0 then c+ z< c + 0= c hence C+ 0 C C. Also, if c' EC then
choose a d' E C such that c' < d'. Then c' - d'<0soc -d'E0. And
c' = d' + (c' - d'). Hence C S C + 0. We conclude that C + 0 = C.

Finally, for Axiom A5, we let C be a cut and set -C to be equal to
{d E Q : c + d < 0 for all c E C}. If x is a rational upper bound for C
and c E C then -x E -C so -C is not empty. By its very definition,
C+(-C) C 0. Further, if z E 6 and c E C we set c' = z-c. Then C' E-C
and z = c + c'. Hence 0 C C + (-C). We conclude that C + (-C) = 0.

Having verified the axioms for addition, we turn now to multiplica-
tion.

Definition 2.11 If C and D are cuts then we define the product C V
as follows:

If some cEC,dE V
with c>0,d>0}

If

If C<O,D>Othen

IfC,D <O then (-C) (-D)

If either

Notice that, for convenience, we have defined multiplication of neg-
ative numbers just as we did in high school. The reason is that the
definition that we use for the product of two positive numbers cannot
work when one of the two factors is negative (exercise).

It is now a routine exercise to verify that the set of all cuts, with this
definition of multiplication, satisfies field axioms M1-M5. The proofs
follow those for Al-A5 rather closely.

For the distributive property, one first checks the case when all the
cuts are positive, reducing it to the distributive property for the ratio-
nals. Then one handles negative cuts on a case by case basis.

We now know that the collection of all cuts forms an ordered field.
Denote this field by the symbol R. We next verify the crucial property
of R that sets it apart from Q :
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Theorem 2.11
The ordered field R satisfies the least upper bound property.

Proof: Let S be a subset of R which is bounded above, Define

s*= Uc.
CES

Then S* is dearly nonempty, and it is therefore a cut since it is a union
of cuts. It is also clearly an upper bound for S since it contains each
element of S. It remains to check that S* is the least upper bound for
S.

In fact if T < S* then T c S* and there is a rational number q in
S* \ T. But, by the definition of $*, it must be that q E C for some
C E S. So C > T, and T cannot be an upper bound for S. Therefore S*
is the least upper bound for S, as desired. 0

We have shown that R is an ordered field which satisfies the least
upper bound property. It remains to show that R contains (a copy of)
Q in a natural way. In fact, if q E Q we associate to it the element
V(q) = Cq = {x E Q : x < q}. Then Cq is obviously a cut. It is also
routine to check that

q(q + 4) ='p(q) + 4p(4) and W(q - ='p(q) . V(q')-

Therefore we see that <p represents Q as a subfield of R.
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Sequences

3.1 Convergence of Sequences
A sequence of real numbers is a function V : N -+ R. We often write the
sequence as W(1), W(2), ... or, more simply, as cpl, , .... A sequence of
complex numbers is defined similarly, with R replaced by C.

Example 3.1

The function So(j) = 1/j is a sequence of real numbers. We will
often write such a sequence as cpj = 1/j or as {1,1/2,1/3, ...}
or as {1/j}'1 .

The function p(j) = cosj + i sin j is a sequence of complex
numbers.

Do not be misled into thinking that a sequence must form
a pattern, or be given by a formula. Obviously the ones which
are given by formulas are easy to write down, but they are cer-
tainly not typical. For example, the coefficients in the deci-
mal expansion of 7r, {3,1,4,I,5,9,2,6,5,.. J, fit our definition
of sequence--but they are not given by any obvious pattern. 0

The most important question about a sequence is whether it con-
verges. We define this notion as follows.

Definition 3.1 A sequence {a3} of real (resp. complex) numbers is
said to converge to a real (reap. complex) number a if, for each e > 0,
there is an integer N > 0 such that if j > N then Ia2 - al < e. We can
a the limit of the sequence {aj }. We sometimes write aj -+ a.

If a sequence {a,} does not converge then we frequently say that it
diverges.

75
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Example 3.2

Let aj = 1/j, j = 1, 2. .... Then the sequence converges to 0.
For let c > 0. Choose N to be the next integer after 1/c (we use
here the Archimedean principle). If j > N then

Ia2-0I-Ia,I 1 < N <E,j
proving the claim.

Let bj = (-1)i, j = 1, 2..... Then the sequence does not
converge. To prove this assertion, suppose to the contrary that
it does. Say that the sequence converges to a number a. Let
e = 1/2. By definition of convergence, there is an integer N > 0
such that if j > N then Ibi - al < E = 1/2. For such j we have

Ibi - bi+i I Ibj - al + Ia - bj+l I

(by the triangle inequality-Proposition 2.4). But this last is

<E+E=1.

On the other hand,

Ibi - bi+il = l(-1)i - (-1)i+ll = 2.

The last two lines yield that 2 < 1, a clear contradiction. So the
sequence {bj } has no limit.

We begin with a few intuitively appealing properties of convergent
sequences which will be needed later. First, a definition.

Definition 3.2 A sequence aj is said to be bounded if there is a
number M > 0 such that I aj I < M for every j.

Now we have

Proposition 3.1
Let {aj} be a convergent sequence. Then we have

The limit of the sequence is unique.

The sequence is bounded.

Proof: Suppose that the sequence has two limits a and ii. Let e > 0.
Then there is an integer N > 0 such that for j > N we have the
inequality Iaj - al < c. Likewise, there is an integer N > 0 such that for
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j>Nwehave laj-&I<E. Let No=max{N,N}. Then, for j> N0,
we have

la-a1 <Ia-ajl+Iaj -aI < E+E=2E.
Since this inequality holds for any f > 0 we have that a = a`.

Next, with a the limit of the sequence and c = 1, we choose an
integer N > 0 such that j > N implies that Iaj - al < E = 1. For such
j we have that

IajI <- Iaj - al + IaI < 1 + IaI - P.

Let Q = max{Tall, Ia21,.. , IaNI}. If j is any natural number then ei-
ther 1 < j < N (in which case IajI < Q) or else j > N (in which case
IajI < P). Set M = max{P, Q}. Then IajI < M for all j, as desired. So
the sequence is bounded.

The next proposition records some elementary properties of limits
of sequences.

Proposition 3.2
Let {aj} be a sequence of real or complex numbers with limit a and

{bj} be a sequence of real or complex numbers with limit ,Q. Then we
have

(1) If c is a constant then the sequence {c aj) converges to c a;

(2) The sequence jaj + bj} converges to a +,0;

(3) The sequence aj - bj converges to a /3;

(4) If bj 0 0 for all j and /3 0 0 then the sequence aj/bj converges to
a//3.

Proof: For the first part, we may assume that c 34 0 (for when c = 0
there is nothing to prove). Let e > 0. Choose an integer N > 0 such
that for j > N it holds that

Iaj - al < ICI .

For such j we have that

c

This proves the first assertion.
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The proof of the second assertion is similar, and we leave it as an
exercise.

For the third assertion, notice that the sequence {aj } is bounded (by
the second part of Proposition 3.1): say that I aj 1 < M for every j. Let
c > 0. Choose an integer N > 0 so that Iaj - al < E/(2M + 2101) when
j > N. Also choose an integer N > 0 such that I bj -,3I < c/ (2M + 2101)
when j > N. Then, for j > max{N, N}, we have that

jajbj - a,31 = 1 aj(bj - 0) +$(aj - a)I
< l aj(bj - I3)I + I0(aj - a)I

E E<M
2M+21,31 +II3I 2M+21,31

E E22
= E.

So the sequence {ajbj } converges to ad.
Part (4) is proved in a similar fashion and we leave the details as

an exercise.

REMARK 3.1 You were probably puzzled by the choice of N and
N in the proof of part (3) of Proposition 3.2---where did the number
,E/(2M + 21/31) come from? The answer of course becomes obvious when
we read on further in the proof. So the lesson here is that a proof is
constructed backward: you look to the end of the proof to see what you
need to specify earlier on. Skill in these matters can come only with
practice. f

When discussing the convergence of a sequence, we often find it
inconvenient to deal with the definition of convergence as given. For
this definition makes reference to the number to which the sequence is
supposed to converge, and we often do not know this number in advance.
Would it not be useful to be able to decide whether a series converges
without knowing to what it converges?

Definition 3.3 Let {aj} be a sequence of real (resp. complex) num-
bers. We say that the sequence satisfies the Cauchy criterion (A. L.
Cauchy, 1789-1857)-snore briefly, that the sequence is Cauchy-if for
each e > 0 there is an integer N > 0 such that if j, k > N then
Iaj - akI < E.
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Notice that the concept of a sequence being Cauchy simply makes
precise the notion of the elements of the sequence (i) getting closer to-
gether and (ii) staying close together.

Lemma 3.1
Every Cauchy sequence is bounded.

Proof: Let e = 1 > 0. There is an integer N > 0 such that Iai - akI <
e = 1 whenever j, k > N. Thus if j > N + 1 we have

I ai 15 IaN+1 + (ai - aN+1) I

5 IaN+1I + Iai - aN+1I
5IaN+1I+1=K.

Let L = max{IaII, Ia2l, , IaNI}. If j is any natural number, then ei-
ther 1 < j < N, in which case Iail < L, or else j > N, in which case
I ai I < K. Set M = max{K,L}. Then, for any j, Iai I < M as required. 0

Theorem 3.1
Let {ai } be a sequence of real numbers. The sequence is Cauchy if and
only if it converges to some limit a.

Proof: First assume that the sequence converges to a limit a. Let
e > 0. Choose, by definition of convergence, an integer N > 0 such that
if j>Nthen jai -aI<e/2. If j, k> N then

Iai-akI<Iaa-al +Ia-akI<2+2=e.

So the sequence is Cauchy.
Conversely, suppose that the sequence is Cauchy. Define

S = {x E R : x < ai for all but finitely many j}.

By the lemma, the sequence {ai } is bounded by some number M. If x
is a real number less than -M then x E S, so S is nonempty. Also S
is bounded above by M. Let a = sup S. Then a is a well-defined real
number, and we claim that a is the limit of the sequence {ai}.

To see this, let e > 0. Choose an integer N > 0 such that I ay -akI <
e/2 whenever j, k > N. Notice that this last inequality implies that

Iai-aN+1I <e/2 when j>N+1 (*)

hence
ai > aN+l -E/2 when j > N + 1.
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Thus aN+1 - E/2 E S and it follows that

a > aN+1 - E/2.
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Line (*) also shows that

aj < aN+l + e/2 when j> N+1.

Thus aN+1 + E/2 ¢ S and

a < aN+t + E/2. (***)

Combining lines (**) and (***) gives

Ia-aN+1I <E/2.

But then line (*) yields, for j > N, that

la - aj I C Ia - aN+1 I + aN+1 - aj I < E/2 + E/2 = c.

This proves that the sequence {aj } converges to a, as claimed.

Corollary 3.1
Let {a j } be a sequence of complex numbers. The sequence is Cauchy

if and only if it is convergent.

Proof: Write aj = aj+ibj, with aj,bj real. Then {aj} is Cauchy if and
only if {aj} and {bj} are Cauchy. Also {aj} is convergent to a complex
limit a if and only if {aj } converges to Re a and {bj } converges to Im a.
These observations, together with the theorem, prove the corollary.

Definition 3.4 Let {aj } be a sequence of real numbers. The sequence
is said to be monotone increasing if a1 < a2 < .... It is monotone
decreasing if al > a2 > ....

The word "monotone" is used here primarily for reasons of tradition.
In many contexts the word is redundant and we omit it.

Proposition 3.3
If {aj } is a monotone increasing sequence which is bounded above-aj <
M for all j-then {aj} is convergent. If {bj} is a monotone decreasing
sequence which is bounded below--bj > K > -oo for all j--then {bj}
is convergent.
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Proof: Let e > 0. Let a = sup a3 < oo. By definition of supremum
there is an integer N > 0 such that if j > N then Ia, - al < e. Then if
I > N + 1 we have ar < at < a hence Iae - aI < e. Thus the sequence
converges to a.

The proof for monotonically decreasing sequences is similar and we
omit it. 0

A proof very similar to that of the proposition gives the following
useful fact:

Corollary 3.2
Let S be a set of real numbers which is bounded above and below. Let

,3 be its supremum and a its infimum. If c > 0 then there are s, t E S
such that Is - QI < eand it - al < e.

Proof: This is a restatement of the proof of the proposition. 0

We conclude the section by recording one of the most useful results
for calculating the limit of a sequence:

Proposition 3.4 [The Pinching Principle]
Let {a,}, {b,,}, and {cj } be sequences of real numbers satisfying

a3<b,<c3

for every j. If
lima= limcj =a

j_oo i.-.00

for some real number a then

Proof: This proof is requested of you in the exercises.

lim b,, = a.
i-ac

3.2 Subsequences
Let {al} be a given sequence. If

0 < jl < j2 < ...

are positive integers then the function

k'-' ai,,

0
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is called a subsequence of the given sequence. We usually write the
subsequence as

{ask }' 1 or {ask } .

Example 3.3

Consider the sequence

{23} _ {2,4,8,...}.

Then the sequence

{22k} = {4,16,64,...}

is a subsequence. Notice that the subsequence contains a sub-
collection of elements of the original sequence in the same order.
In this example, jk = 2k.

Another subsequence is

{2(2k) } = (4,16,256 ....}.

In this instance, it holds that jk = 2k. Notice that this new
subsequence is in fact a subsequence of the first subsequence.
That is, it is a sub-subsequence of the original sequence {23}.
0

Proposition 3.5
If {aj} is a convergent sequence with limit a, then every subsequence

converges to the limit a.
Conversely, if a sequence {bj} has the property that each of its

subsequences is convergent then {b2 } itself is convergent.

Proof: Assume {aj} is convergent to a limit a, and let {ask} be a
subsequence. Let c > 0 and choose N > 0 such that Jaj - al < E
whenever j > N. Now if k > N then jk > N hence Jai,, - al < E.
Therefore, by definition, the subsequence {a3,) also converges to a.

The converse is trivial, simply because the sequence is a subsequence
of itself. 0

See Exercise 7 for a powerful generalization of the converse direction of
this proposition.

Now we present one of the most fundamental theorems of basic real
analysis (due to B. Bolzano, 1781-1848, and K. Weierstrass, 1815-1897).

Theorem 3.2 [Bolzano-Weierstrass]
Let {aj} be a bounded sequence in R. Then there is a subsequence
which converges.
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Proof: Say that Ia j I < M for every j. We may assume that M 0 0.
One of the two intervals [-M, 0] and [0, M] must contain infinitely

many elements of the sequence. Say that [0, MJ does. Choose aj, to be
one of the infinitely many sequence elements in 10, MI.

Next, one of the intervals (0, M/21 and [M/2, MI must contain in-
finitely many elements of the sequence. Say that it is [0, M/21. Choose
an element aj with j2 > jl, from [0, M/2]. Continue in this fash-
ion, halving the interval, choosing a half with infinitely many sequence
elements, and selecting the next subsequence element from that half.

Let us analyze the resulting subsequence. Notice that I a j, -a j, I < M
since both elements belong to the interval [0, MJ. Likewise, Iaj, - aj, I <
M/2 since both elements belong to [0, M/2J. In general, I aj,, - aj,t+, I <
2-k+1. M for each k E N. Now let c > 0. Choose an integer N > 0 such
that 2-N < E/(2M). Then for any m > I > N we have

I aj, - ajmI = 1(a3, -aj,+j)+(aj,+, -aj,+,)+...+(ajm-, -ajm)I

< faj, - a.i,+, I + I a.i,+, - aj,+21 + ... + Iajm-, - ajm I
< 2-t+1 . M + 2-'- M ...

+2-m+2 . M

= (2-t+1 + 2-t + 2-t-1 + ... + 2-m+2). M

_
((2-t+2 _ 2-t+1) + (2-t+1 - 2-t) + .. .

+(2-m+3 - 2-m+2)) . Al

_ (2-1+2-2 -m+2). M
<2-t+2.M

<2.2M
= E.

We see that the subsequence {aj,, } is Cauchy, so it converges.

REMARK 3.2 The Bolzano-Weierstrass theorem is a generalization
of our result from the last section about monotone increasing sequences
which are bounded above (resp. monotone decreasing sequences which
are bounded below). For such a sequence is surely bounded above and
below (why?). So it has a convergent subsequence. And thus it follows
easily that the entire sequence converges. Details are left as an exercise.
I
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Example 3.4

In this text we have not yet given a rigorous definition of the
function sin x (see Section 10.3). However, just for the moment,
use the definition you learned in calculus class and consider the
sequence {sin j}°O_1. Notice that the sequence is bounded in ab-
solute value by 1. The Bolzano-Weierstrass theorem guarantees
that there is a convergent subsequence, even though it would be
very difficult to say what that convergent subsequence is.

Corollary 3.3
Let {aj} be a bounded sequence of complex numbers. Then there is a

convergent subsequence.

Proof: Write aj = aj + ibj, with aj,bj E R. The fact that {aj}
is bounded implies that {aj } is bounded. By the Bolzano-Weierstrass
theorem, there is a convergent subsequence {ajk }.

Now the sequence {bjk} is bounded. So it has a convergent subse-
quence {bjk, }. Then the sequence {aj,, } is convergent, and is a subse-
quence of the original sequence {aj}.

In earlier parts of this chapter we have discussed sequences that
converge to a finite number. Such a sequence is, by Proposition 3.1,
bounded. However, in some mathematical contexts, it is useful to speak
of a sequence "converging to infinity." Obviously this notion of con-
vergence is separate and distinct from the notion that we have been
discussing up until now. Context always makes clear which type of con-
vergence is meant. We now will treat briefly the idea of `'convergence to
infinity."

Definition 3.5 We say that a sequence {aj} of real numbers con-
verges to +oo if, for every M > 0, there is an integer N > 0 such that
aj > M whenever j > N. We write aj -a +oc.

We say that {aj} converges to -oo if for every K > 0 there is an
integer N > 0 such that aj < -K whenever j > N. We write aj -oc.

REMARK 3.3 Notice that the statement aj -+ +oc means that we
can make aj become arbitrarily large and positive and stay large and
positive just by making j large enough.

Likewise, the statement aj -> -oc means that we can force aj to
be arbitrarily large and ne7tive, and stay large and negative, just by
making j large enough.



3.3 Lim sup and Lim inf 85

Example 3.5

The sequence { j2} converges to +oo. The sequence {-2j + 18}
converges to -oo. The sequence {j + (-1N j) has no infinite
limit and no finite limit. However, the subsequence {O, 0, 0,...)
converges to 0 and the subsequence (4,8,12...) converges to
+oo. You are asked to supply details in Exercise 8.

With the new language provided by Definition 3.5, we may general-
ize Proposition 3.3:

Proposition 3.6
Let {aj } be a monotone increasing sequence of real numbers. Then the

sequence has a limit-either a finite number or +oo.
Let {bj} be a monotone decreasing sequence of real numbers. Then

the sequence has a limit-either a finite number or -oo.

In the same spirit as the last definition, we also have the following:

Definition 3.6 If S is a set of real numbers which is not bounded
above, we say that its supremum (or least upper bound) is +oo.

If T is a set of real numbers which is not bounded below then we
say that its infimum (or greatest lower bound) is -oo.

Exercise 9 asks you to explain why logic forces us to declare the
supremum of the empty set to be -oo and the infimum of the empty set
to be +oo.

3.3 Lim sup and Lim inf
Convergent sequences are useful objects, but the unfortunate truth is
that most sequences do not converge. Nevertheless, we would like to have
a language for discussing the asymptotic behavior of any real sequence
{a,,} as j -- oo. That is the purpose of the concepts of "limit superior"
(or "upper limit") and "limit inferior" (or "lower limit").

Definition 3.7 Let {a,} be a sequence of real numbers. For each j
let

A, = inf{a,, a,+1, ai+2, ...}.

Then {Aj} is a monotone increasing sequence (since as j becomes large
we are taking the infimum of a smaller set of numbers), so it has a limit.



86 Chapter 3: Sequences

We define the limit infimum of {aj) to be

liminfaj = lien Aj.

Likewise, let
Bj = sup{aj, aj+1, aj+a, ...}.

Then { Bj } is a monotone decreasing sequence (since as j becomes large
we are taking the supremum of a smaller set of numbers), so it has a
limit. We define the limit supremum of {aj} to be

lim sup a j = lim Bj.j-x

REMARK 3.4 What is the intuitive content of this definition? For
each j, Aj picks out the greatest lower bound of the sequence in the
jth position or later. So the sequence {Aj} should tend to the smallest
possible limit of any subsequence of (aj}.

Likewise, for each j, Bj picks out the least upper bound of the
sequence in the jth position or later. So the sequence {Bj} should tend
to the greatest possible limit of any subsequence of {aj }. We shall make
this remark more precise in Proposition 3.7 below.

Notice that it is implicit in the definition that every real sequence
has a limit supreinwu and a limit infimuui. I

Example 3.6
Consider the sequence {(-1)j}. Of course this sequence does
not converge. Let us calculate its lim sup and lim inf .

Referring to the definition, we have that Aj = -1 for every
j. so

liminf(-1)j = lim(-1) = -1.
Similarly, Bj = +1 for every, j. Therefore

limsup(-1)' = lim(+1) = +1.

As we predicted in the remark, the lim inf is the least sub-
sequential limit, and the lim sup is the greatest subsequential
limit.

Now let us prove the characterizing property of lira sup and lim inf
to which we have been alluding.

Proposition 3.7
Let {aj } be a sequence of real numbers. Let /3 = lim sup, . aj and
a = lim infj. aj. If {aj, } is any subsequence of the given sequence
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then

a < lim inf aj, < lim sup aj, < Q .
t-.oo r-oo

Moreover, there is a subsequence {aj, } such that

lim a
k-.oo

and another sequence {ajm } such that

lim ajm = /3.
M-00
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Proof: For simplicity in this proof we assume that all lim sups and
liminfs are finite. The case of infinite limsups and infinite liminfs is
left to Exercise 10.

We begin by considering the lim inf. We adopt the notation of
Definition 3.7. There is a jl > 1 such that IAI - aj, I < 2-'. We
choose jl to be as small as possible. Next, we choose j2, necessarily
greater than or equal to jj, such that j2 is as small as possible and
Iaj2 - A21 < 2-2. Continuing in this fashion, we select aj, > aj,k_l such
that Iaj, - AkI < 2-k-1, etc.

Recall that Ak -+ a = lim infj.. aj. Now fix c > 0. If N is an
integer so large that k > N implies that IAk - al < E/2 and also that
2-N < E/2 then for such k we have

Iajb - aI<- Iajk - AkI+IAk - aI
< 2 +

2
E E22

=E.

Thus the subsequence {aj, } converges to a, the lim inf of the given
sequence. A similar construction gives a (different) subsequence {ajm }
converging to /3, the lim sup of the given sequence.

Now let {aj,} be any subsequence of the sequence {aj}. Let /3* be
the lim sup of this subsequence. Then, by the first part of the proof,
there is a subsequence {aj,m } such that

lim aj,mm-ao

But aj,m < Bj,m by the very definition of the Bs. Thus

lim aj,m < lim Bj,m = /3
m-.oo m-00

or

lim sup aj, < /3,
t-oo
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as claimed. A similar argument shows that

lint inf a > a.lax

This completes the proof of the proposition. D

Corollary 3.4
If {a3} is a sequence and {ajk} is a convergent subsequence then

lim inf aj < lim aik < lim sup ai
x--30 koo J-- 00

Take it for granted for the moment that it has been rigorously defined
and proved to be irrational (in fact we will do this in complete detail
later). Then Exercise 33 of Chapter 2 shows that the positive integers
are dense, modulo multiples of it, in the interval [0, 7r]. It follows that the
sequence {co.s j} is dense in the interval [-1, 1] in the following sense:
given any number a E [-1, 1] there is a subsequence cos jk such that
limk.,,,, cos jk = a. In particular, the lim sup of the sequence is 1 and
the lim inf is -1. You are asked to provide the details of these assertions
in Exercise 11.

We close this section with a fact that is analogous to one for the
supremum and infimum (that is treated in Exercise 5 at the end of the
chapter). Its proof is left as Exercise 12.

Proposition 3.8
Let {a, } be a sequence and set lim supaj = t3 and lim inf ai = a.

Assume that a,/3 are finite real numbers. Let E > 0. Then there are
arbitrarily large j such that ai > $ - E. Also there are arbitrarily large
k such that ak < a + e.

3.4 Some Special Sequences
We often obtain information about a new sequence by comparison with
a sequence that we already know. Thus it is well to have a catalogue of
fundamental sequences which provide a basis for comparison.

Example 3.7

Fix a real number a. The sequence jai} is called a power se-
quence. If -1 < a < 1 then the sequence converges to 0. If
a = 1 then the sequence is a constant sequence and converges
to 1. If a > 1 then the sequence converges to +oo. Finally, if
a < -1 then the sequence diverges. 0
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Recall that in Section 2.5 we discussed the existence of n°h roots of
positive real numbers. If a > 0, m E Z, and n E N then we may define

am/n = (am)1/n .

Thus we may talk about rational powers of a positive number. Next, if
/3 E R then we may define

a#=sup{a':gEQ,q</3}.

Thus we can define any real power of a positive real number. Exercise
13 asks you to verify several basic properties of these exponentials.

Lemma 3.2
If a > 1 is a real number and /3 > 0 then aQ > 1.

Proof: Let q be a positive rational number which is less than /3. Say
that q = rn/n, with m, n integers. It is obvious that am > 1 and hence
that (am)1 n > 1. Since a19 majorizes this last quantity, we are done. 0

Example 3.8
Fix a real number a and consider the sequence {j°}. If a > 0
then it is easy to see that j° - +oo: to verify this assertion
fix1M > 0 and take the number N to be the first integer afterMO

*If a = 0 then j° is a constant sequence, identically equal to
1.

If a < 0 then j° = 1/j-°. The denominator of this last
expression tends to +oo hence the sequence j° tends to 0. 0

Example 3.9

The sequence {h/3} converges to 1. In fact, consider the ex-
pressions aj = j 1 /3 - 1 > 0. We have that

j =
(a.i

+ 1)J > 3U
2

1) (as)2,

(the latter being just one term from the binomial expansion-
see Section 2.1). Thus

0 < a3 < 2/(j - 1)

as long as j > 2. It follows that a, -# 0 or jl/i -+ 1. 0
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Example 3.10

Let a be a positive real number. Then the sequence alb con-
verges to 1. To see this, first note that the case a = 1 is trivial,
and the case a > 1 implies the case a < 1 (by taking recipro-
cals). So we concentrate on a > 1. But then we have

1<a'/j<jl/j
when j > a. Since jl/j tends to 1, Proposition 3.4 applies and
the proof is complete. 0

Example 3.11

Let A > 1 and let a be real. Then the sequence

converges to 0.
To see this, fix an integer k > a and consider j > 2k. [Notice

that k is fixed once and for all but j will be allowed to tend to
+oo at the appropriate moment.] Writing A = 1 + p, p > 0, we
have that

V. =(l +p)3 > JU -1)(j-2)...(j-k+1)pk lj-k
k(k - 1)(k - 2) ...2. 1

Of course this comes from picking out the kth term of the bino-
mial expansion for (1 + p)j. Notice that since j > 2k then each
of the expressions j, (j - 1).... (j - k + 1) in the numerator on
the right exceeds j/2. Thus

a . pkj IR>
2k k!

and ja
Q

2k . k! j°t-k .2 k . k!
0<

Tj
< j 'j

pk k=
Since a - k < 0, the right side tends to 0 as j - cc. 0

Example 3.12
The sequence

3

converges. In fact it is monotone increasing and bounded above.
Use the Binomial Expansion to prove this assertion. The limit
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of the sequence is the number that we shall later call e (in honor
of Leonhard Euler, 1707-1783, who first studied it in detail). We
shall study this sequence further in Proposition 4.9 of Section
4.4. 0

Example 3.13

The sequence
i

converges to 1/e, where the definition of e is given in the last
example. More generally, the sequence

+2}
71111

3

converges to e2 (here ez is defined as in the discussion follow-
ing Example 3.7 above). Exercise 14 asks you to prove these
assertions. 0
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Exercises
1. Let {a f }, {bj} be sequences of real numbers. Prove the inequality

lim sup(a J + bj) < lim sup a,, + lim sup b, . How are the lim infs
related? How is the quantity (lim sup a') (lim sup bj) related to
lim sup(aa b?)? How are the lim infs related?

2. Consider {a3 } both as a sequence and as a set. How are the lim sup
and the sup related? How are the lim inf and the inf related? Give
examples.

3. Let {a3 } be a sequence of positive numbers. How are the lim sup
and Jim inf of {a,} related to the lim sup and lim iaf of { 1/a,, }?

4. Prove parts (2) and (4) of Proposition 3.2.

5. Prove the following result, which we have used without comment
in the text: Let S be a set of real numbers which is bounded above
and let t = sup S. For any e > 0 there is an element 8 E S such
that t - e < s < t. (Remark: Notice that this result makes
good intuitive sense: the elements of S should become arbitrarily
close to the supremum t, otherwise there would be enough room
to decrease the value of t and make the supremum even smaller.)

6. Provide the details of the remark following the proof of the Bolzano-
Weierstrass theorem.



92 Chapter 3: Sequences

7. Let {a1} be a sequence of real or complex numbers. Suppose that
every subsequence has itself a subsequence which converges to a
given number a. Prove that the full sequence converges to a.

*

8. Supply the details for the last example of Section 2.

9. Let 0 be the empty set. Prove that sup 0 = -oo and inf 0 = +oo.

10. Provide the details of the proof of Proposition 3.7 in case the limit
is +oo or -oo.

11. Provide the details of the assertion, made in the text, that the
sequence {cos j} is dense in the interval [-1, 1).

12. Prove the last proposition in Section 3.

13. Let a be a positive real number and let p/q = m/n be two different
representations of the same rational number r. Prove that

(am)'/n = (a')'''.

(al/n)m = (am)l/n.

If [ is another positive real and ry is any real then prove that

(a'Q)1=a''.T.

Also prove that

* 14. Prove that

*

.7

converges to ex for any real number x.

15. Discuss the convergence of the sequence { (1 / j )1 / } _ 1

16. Find the lim sup and lim inf of the sequences

{isinjIsinj} and {Icosjlc°s,}.

17. Discuss the convergence of the sequence {(jj)/(2j)!}j_1.

18. How are the lim sup and lim inf of {aa } related to the lien sup and
lim inf of {-aj }?

19. Let {a3} be a real sequence. Prove that if

lim inf aj = lim sup aj

then the sequence {a,} converges. Prove the converse as well.
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20. Let a < b be real numbers. Give an example of a real sequence
whose lim sup is b and whose Um inf is a.

21. Explain why we can make no sense of the concepts of Um sup and
Um inf for complex sequences.

22. Let {a,} be a sequence of complex numbers. Suppose that for
every pair of integers N > M > 0 it holds that lam - aM+, I +
IaM+i -aM+2I+ +IaN_1 -aNI < 1. Prove that {a,} converges.

23. Let al, a2 > 0 and for j > 3 define aj = a3_1 + aj_2. Show that
this sequence cannot converge to a finite limit.

24. Suppose a sequence {a3 } has the property that for every natural
number N there is a iN such that a,N = a,N+1 = . = ajN+N In
other words, the sequence has arbitrarily long repetitive strings.
Does it follow that the sequence converges?

25. Give an example of a single sequence of rational numbers with
the property that for every real number a there is a subsequence
converging to a.

26. Let S = {0, 1, 1/2,1/3,1/4 ....}. Give an example of a sequence
{aj} with the property that for each s E S there is a subsequence
converging to s, but no subsequence converges to any limit not in

*

S.

27. Prove Proposition 3.4.

28. Give another proof of the Bolzano-Weierstrass theorem as follows.
If {a3} is a bounded sequence let b; = inf{a,, a31,.. .}. Then
each bj is finite, bl < b2 < ..., and {b,, } is bounded above. Now
use Proposition 3.3.

29. Consider the sequence given by

1
aj = I 1 + 2 +3+...+ 11 -logj.

L 1
Use a picture (remember that log is the antiderivative of 1/x) to
give a convincing argument that the sequence {a3 } converges. The
limit number is called -y. This number was first studied by Euler.
It arises in many different contexts in analysis and number theory.

As a challenge problem, show that

*

Iai-7I<jC

for some universal constant C > 0.





Chapter 4

Series of Numbers

4.1 Convergence of Series
In this section we will use standard summation notation:

n
a1=a.+an+1+...+ an.

j =M

A series is an infinite sum. The only way to handle an infinite process
in mathematics is with a limit. This consideration leads to the following
definition:

Definition 4.1 The formal expression

00

Eaj,
j=1

where the ajs are real or complex numbers, is called a series. For N =
1, 2, 3,. . ., the expression

N

SN=I: aj=a1+a2+...aN
j=1

is called the Nth partial sum of the series. In case

lira SN
N-.oo

exists and is finite we say that the series converges. Otherwise we say
that the series diverges.

Notice that the question of convergence of a series, which should
be thought of as an addition process, reduces to a question about the
sequence of partial sums.

95
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Example 4.1

Consider the series
00

1:2-j.

j=1

The Nth partial sum for this series is

SN

In order to determine whether the sequence {SN} has a limit,
we rewrite SN as

SN = (2-0 - 2-') + (2-' - 2-2) + .. .
(2-N+1 -2 -N)

The expression on the right of the last equation telescopes (i.e.,
successive pairs of terms cancel) and we find that

SN = 2-0 - 2-N

Thus
lira SN = 2-0 = 1.

N-oo
We conclude that the series converges.

Example 4.2
Let us examine the series

°O 1

for convergence or divergence. Now

S1=1=2
1S2=1+2=2

S4=1+2+3+4)

+2+(4+4)>1+2+22

58=1+2+G 4)+(5+6+7+6)

1+2+ 4+ 4) + (8 +1 +g+g)
5 \ \

= 2

11
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In general this argument shows that

S2 L'
> k+2

2

The sequence of SN s is increasing since the series contains
only positive terms. The fact that the partial sums S1, S2i S4, SS....
increases without bound shows that the entire sequence of par-
tial sums must increase without bound. We conclude that the
series diverges.

Just as with sequences, we have a Cauchy criterion for series:

Proposition 4.1
The series E 1 aj converges if and only if for every c > 0 there is an

integer N > 1 such that if n > m > N then

n

E aj
j=m

< E. (*)

The condition (*) is called the Cauchy criterion for series.

Proof: Suppose that the Cauchy criterion holds. Pick f > 0 and choose
N so large that (*) holds. If n > m > N then

I Sn - Sm I =
n
E aj

j=m+1

by hypothesis. Thus the sequence {SN } is Cauchy in the sense discussed
for sequences in Section 3.1. We conclude that the sequence {SN} con-
verges; by definition, therefore, the series converges.

Conversely, if the series converges then, by definition, the sequence
{SN} of partial sums converges. In particular the sequence {SN} must
be Cauchy. Thus for any e > 0 there is a number N > 0 such that if
n>m>Nthen

ISn - SmI < E.

This just says that
n

aj <E,
j=m+1

and this last inequality is the Cauchy criterion for series.
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Example 4.3

Let us use the Cauchy criterion to verify that the series

00
1E

i-1

converges.
Notice that if n > m > 1 then

1n

Emj (j+l)
1 1

+(n n+l
The sum on the right plainly telescopes and we have

rn 1

m n+1

Let us choose N to be the next integer after 1/e. Then for

n > m > N we may conclude that

n 1

E
j=M

1 1 1 1
n+1<m<N<e.

This is the desired conclusion. 0

The next result gives a necessary condition for a series to converge.
It is a useful device for detecting divergent series, although it can never
tell us that a series converges.

Proposition 4.2 [The Zero Test]
If the series

converges then the terms aj tend to zero as j oo.

(m m+1)+(m+1 m+2) +

Proof: Since we are assuming that the series converges, then it must
satisfy the Cauchy criterion. Let e > 0. Then there is an integer N > 1
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such that if n > m > N then

<E.

We take n = m and m > N. Then (*) becomes

- E .la,,,

But this is precisely the conclusion that we desire.

Example 4.4

The series must diverge, even though its terms ap-
pear to be cancelling each other out. The reason is that the
summands do not tend to zero; hence the preceding proposition
applies.

Write out several partial sums of this series to see more
explicitly that the partial sums are -1, +1, -1, +1, ... and
hence that the series diverges.

99

(*)

0

We conclude this section with a necessary and sufficient condition
for convergence of a series of nonnegative terms. As with some of our
other results on series, it amounts to little more than a restatement of
a result on sequences.

Proposition 4.3
A series

00

E aj
j_1

with all a1 > 0 is convergent if and only if the sequence of partial sums
is bounded.

Proof: Notice that, because the summands are nonnegative, we have

Sl =a1 <a1+a2=S2,

S2 = a1 + a2:5 a1 + a2 + a3 = S3,

and in general

SN : SN + aN+1 = SN+1

Thus the sequence {SN } of partial sums forms a monotone increasing
sequence. We know that such a sequence is convergent to a finite limit
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if and only if it is bounded above (see Section 3.1). This completes the
proof.

Example 4.5

The series 1 is divergent since the summands are non-
negative and the sequence of partial sums {SN} = {N} is un-
bounded.

Referring back to Example 4.2, we see that the series _l
diverges because its partial sums are unbounded.

We see from the first example that the series E'u 2-j con-
verges because its partial sums are all bounded above by 1.

It is frequently convenient to begin a series with summation at j = 0
or some other term instead of j = 1. All of our convergence results still
apply to such a series because of the Cauchy criterion. In other words,
the convergence or divergence of a series will depend only on the behavior
of its "tail."

4.2 Elementary Convergence Tests
As previously noted, a series may converge because its terms are non-
negative and diminish in size fairly rapidly (thus causing its partial sums
to grow slowly) or it may converge because of cancellation among the
terms. The tests which measure the first type of convergence are the
most obvious and these are the "elementary" ones that we discuss in the
present section.

Proposition 4.4 [The Comparison Test]
Suppose that Ej_1 aj is a convergent series of nonnegative terms. If
{bj} are real or complex numbers and if lbjj < aj for every j then the
series E'1 bj converges.

Proof: Because the first series converges, its satisfies the Cauchy cri-
terion for series. Hence, given e > 0, there is an N so large that if
n>m>Nthen

n

E aj
j=m

< E.

But then
n n n

E bj E
jbjj

E aj < E.

j=m j=m j=m
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It follows that the series bj satisfies the Cauchy criterion for series.
Therefore it converges.

Corollary 4.1
If E001 aj is as in the proposition and if 0 < bj < aj for every j then
the series Ej=1 bj converges.

Proof: Obvious.

Example 4.6

The series E 12-j sin j is seen to converge by comparing it
with the series 2-j.

Theorem 4.1 [The Cauchy Condensation Test]
Assume that al>a2>...>aj>...0. The series

00

E aj
j=1

converges if and only if the series

converges.

00

E 2k a2k
k=1

Proof: First assume that the series E,'=1 aj converges. Notice that, for
each k > 1,

2k-1 a2k =a2k +a2k + ... + a2k

2k-1 times
a2k-1+1 + a2k-1+2 + .a2R.

B
2k

E am
m=2k-1+1

Therefore

N N 2k 2N
k-12 'a2k=E am=Eam.

k=1 k=1 m=2k-1+1 m=2
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Since the partial sums on the right are bounded (because the series of
ajs converges), so are the partial sums on the left. It follows that the
series x

E 2k a2k
k=1

converges.
For the converse, assume that the series

00

E2k a2k
k=1

converges. Observe that, for k > 1,

2k

E aj =a2k-1.x.1+a2k-1+2+...+a2k
m=2k-1+1

a2k-1 + a2k-1 +... + a2k-1

2k-1 times

= 2k-1 a2k-1

It follows that

2N N 2k

F, a3 = E am
m=2 k=1 m=2k-1+1

N
Elk-1 a2k-1

.

k=1

(*)

By the hypothesis that the series (*) converges, the partial sums on
the right must be bounded. But then the partial sums on the left are
bounded as well. Since the summands aj are nonnegative, the sequence
of partial sums is increasing. It follows that the full sequence of partial
sums must be bounded, so the series

00

E aj
j=1

converges. 0



4.2 Elementary Convergence Tests 103

Example 4.7
We apply the Cauchy condensation test to the harmonic series

°O

?=1

It leads us to examine the series
00 00

Elk El-
k=1 k=1

Since the latter series diverges, the harmonic series diverges as
well. 0

Proposition 4.5
Let a be a complex number. The series

00

3 =0

is called a geometric series. It converges if and only if lad < 1. In this
circumstance, the sum of the series (that is, the limit of the partial sums)
is 1/(1 - a).

Proof: Let SN denote the Nth partial sum of the geometric series.
Then

a.SN =a(l+a+a2+...aN)
=a+a2+...0N+1

It follows that a . SN and SN are nearly the same: in fact

=SN.

Solving this equation for the quantity SN yields

1 - aN+1SN _
1-a

If jal < 1 then aN+1 - 0 hence the sequence of partial sums tends
to the limit 1/(1-a). If lad > 1 then aN+1 diverges hence the sequence
of partial sums diverges. This completes the proof for Jai 0 1. But the
divergence in case jai = 1 follows because the summands will not tend
to zero. 0
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Corollary 4.2
The series

00
1

ET

converges if r is a real number that exceeds 1 and diverges otherwise.

Proof: We apply the Cauchy Condensation Test. This leads us to
examine the series

00 0
2k .2

-kr _ E (21-r)k

k=1 k=1

This last is a geometric series, with the role of a played by the quantity
a = 21-r. When r > 1 then lal < 1 so the series converges. Otherwise
it diverges.

Theorem 4.2 [The Root Test]
Consider the series

00

E aj
j=1

If

then the series converges.

lien sup la3l1/' < 1
j-.o0

Proof: Refer again to the discussion of the concept of limit superior
in Chapter 3. By our hypothesis, there is a number 0 < f3 < 1 and an
integer N > 1 such that for all j > N it holds that

lai l1/.i <

In other words,

lajl <Y.
Since 0 < /3 < 1 the sum of the terms on the right constitutes a

convergent geometric series. By the Comparison Test, the sum of the
terms on the left converges.

Theorem 4.3 [The Ratio Test]
Consider a series

0C

E aj
j=1
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If

then the series converges.

lim sup I aj+l I <
j-00

1

-0o ai

Proof: It is possible to supply a proof similar to that of the Root Test.
We leave such a proof for the exercises, and instead supply an argument
which relates the two tests in an interesting fashion.

Let

A=l;msupjai+, I <1.-oo a
Select a real number p such that A < p < 1. By the definition of lim sup,
there is an N so large that if j > N then

ai+l <p.
ai

This may be rewritten as

Iai+11 <p-Iail j>N.
Thus (much as in the proof of the Root Test) we have for k > 0 that

IaN+kI p ' IaN+k-1I p ' , - IaN+k-2I :5 ... : 5 , 0' IaNI

It is convenient to denote N + k by n, n > N. Thus the last inequality
reads

Ianl <
pn-N

IaNI

or

Ianll/n < (n-N)/n. IaNI1/n

Remembering that N has been fixed once and for all, we pass to the
lim sup as n oo. The result is

lim sup Ian 11/n < 14.

n-oo

Since p < 1, we find that our series satisfies the hypotheses of the Root
Test. Hence it converges. 0

REMARK 4.1 The proof of the Ratio Test shows that if a series
passes the Ratio Test then it passes the Root Test (the converse is not
true, as you will learn in Exercise 13). Put another way, the Root Test
is a better test than the Ratio Test because it will give information
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whenever the Ratio Test does and also in some circumstances when the
Ratio Test does not.

Why do we therefore learn the Ratio Test? The answer is that there
are circumstances when the Ratio Test is easier to apply than the Root
Test. I

Example 4.8
The series

2i

i=1

is easily studied using the Ratio Test (recall that j! - j (j -
1) ... 2. 1). Indeed ai = 2i / j ! and

ai+l
ai

2-1 +11(j + 1)!

2i/j!

We can perform the division to see that

ai+1 __ 2

ai I j+1
The lim sup of the last expression is 0. By the Ratio Test, the
series converges.

Notice that in this example, while the Root Test applies in
principle, it would be difficult to use in practice.

Example 4.9

We apply the Root Test to the series

00

E
j2

2i

Observe that

hence that
la.ll/j

_
(jl/3)2

2

As j - oo, we see that

limsup'aill/j = 1
j-.00 2

By the Root Test, the series converges.
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It is natural to ask whether the Ratio and Root tests can detect
divergence. Neither test is necessary and sufficient: there are series
which elude the analysis of both tests. However, the arguments that we
used to establish Theorems 4.2 and 4.3 can also be used to establish the
following (the proofs are left as exercises):

Theorem 4.4 [The Root Test for Divergence]
Consider the series

00

E aj
j=1

of nonzero terms. If

then the series diverges.

lim sup la, I" > 1
.7

Theorem 4.5 [The Ratio Test for Divergence]
Consider the series

00

If there is an N > 0 such that

laj+,1,,1 , dj>Naj

then the series diverges.

In both the Root Test and the Ratio Test, if the lira sup is equal to
1, then no conclusion is possible. The exercises give examples of series,
some of which converge and some of which do not, in which these tests
give lira sup equal to 1.

4.3 Advanced Convergence Tests
In this section we consider convergence tests for series which depend on
cancellation among the terms of the series. One of the most profound
of these depends on a technique called summation by parts. You may
wonder whether this process is at all related to the "integration by parts"
procedure that you learned in calculus-it certainly has a similar form.
Indeed it will turn out (and we shall see the details of this assertion as
the book develops) that summing a series and performing an integration
are two aspects of the same limiting process. The summation by parts
method is merely our first glimpse of this relationship.
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Proposition 4.6 [Summation by Parts]
Let and {bj}?_0 be two sequences of real or complex numbers.
For N = 0, 1, 2, . ..set

N

AN = E aj
j=o

(we adopt the convention that A_1 = 0.) Then for any 0 < nz. < n < c
it holds that

n

E aj
j =m

j = [A,.bn -Am-1 bm]

n-1

j=m

Proof: We write
n n

1: 1:
j=m j=m

n n

Aj bj - Aj_] bj
j=m j=m

n n-l
_ Aj.bj+l

j=m j=m-1
n-1

_ Aj (bj - bj+1) + An b, - Am-i bm
=m

This is what we wish to prove.

Now we apply summation by parts to prove a convergence test due
to Niels Henrik Abel (1802-1829).

Theorem 4.6 [Abel's Convergence Test]
Consider the series

aj - b).
j=o

Suppose that

1. The partial sums AN = EN o aj form a bounded sequence;
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2. bo>b1>b2>...;

3. limj . bj = 0.

Then the original series
00

j=o
converges.

Proof: Suppose that the partial sums AN are bounded in absolute
value by a number K. Pick e > 0 and choose an integer N so large that
bN < e/(2K). For N < m < n < oo we use the partial summation
formula to write

n

aj - bj
j=m

n-1

=
j=m

n-1
E Ibj-bj+1l
j=m

Now we take advantage of the facts that bj > 0 for all j and that
bj > bj+l for all j to estimate the last expression by

-1

K [b-
j=m

[Notice that the expressions bj - bj+1i bm, and bn are all positive.] Now
the sum collapses and the last line is estimated by

K- [bn+bm-bn+bm]

By our choice of N the right side is smaller than e. Thus our series
satisfies the Cauchy criterion and therefore converges.

Example 4.10 [The Alternating Series Test]
As a first application of Abel's convergence test, we examine
alternating series. Consider a series of the form

00

E(-1)j . bj, (*)
j=1
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with bl > b2 > b3 > ... > 0 and bj --> 0 as j oc. We set
aj = (-1)3 and apply Abel's test. We see immediately that all
partial sums AN are either -1 or 0. In particular, this sequence
of partial sums is bounded. And the b,s are monotone decreasing
and tending to zero. By Abel's convergence test, the alternating
series (*) converges.

Proposition 4.7
Let b1 > b2 > ... and assume that bj --> 0. Consider the alternating

series E', (- 1)j bj as in the last example. It is convergent: let S be its
sum. Then the partial sums SN satisfy IS - SN I < by+1

Proof: Observe that

IS-SNI = IbN+1 -bN+2+bN+3

But

bN+2 - bN+3 + - ... < bN+2 + (-bN+3 + bN+3)
+(-bN+S + bN+5) +

= bN+2

and

bN+2 - bN+3 + - ... (bN+2 - bN+2) + (bN+4 - bN+4) +
=0.

It follows that

as claimed.

Example 4.11

Consider the series

IS - SN I <- IbN+1 I

7=1

Then the partial sum S1oo = -.688172 is within 0.01 (in fact
within 1/101) of the full sum S and the partial sum Sloooo =
-.6930501 is within 0.0001 (in fact within 1/10001) of S.

0
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Example 4.12

Next we examine a series which is important in the study of
Fourier analysis. Consider the series

smE
We already know that the series diverges. However, the
expression sin j changes sign in a rather sporadic fashion. We
might hope that the series (*) converges because of cancellation
of the summands. We take aj = sin j and bj = 1/j. Abel's test
will apply if we can verify that the partial sums AN of the ajs
are bounded. To see this we use a trick:

Observe that

cos(j - 1/2 j sin 1/2.
Subtracting these equations and solving for sin j yields that

cos(j - 1/2) - cos(j + 1/2)sinj-

We conclude that

N N (j - 1/2) - cos(j + 1/2)
AN -

Ea -j=1 j=1 2 sin 1/2

Of course this sum collapses and we see that

AN
cos(N + 1/2) + cos 1/2

2 sin 1/2

Thus
2 1

IANI <
sin1/2

independent of N.
Thus the hypotheses of Abel's test are verified and the series

(*)

converges. 0
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REMARK 4.2 It is interesting to notice that both the series

Isinj
and

j=1

diverge. The proofs of these assertions are left as exercises for you. I

We turn next to the topic of absolute and conditional convergence.
A series of real or complex constants

00

Eaj
j=1

is said to be absolutely convergent if

oc

EIaiI
j=1

converges. We have:

Proposition 4.8
If the series Ej_1 aj is absolutely convergent then it is convergent.

Proof: This is an immediate corollary of the Comparison Test. 0

Definition 4.2 A series EOM1 a j is said to be conditionally convergent
if Ej_1 aj converges, but it does not converge absolutely.

We see that absolutely convergent series are convergent but the next
example shows that the converse is not true.

Example 4.13
The series

j=1=1
7

converges by the Alternating Series Test. However, it is not
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absolutely convergent because the harmonic series

diverges.

There is a remarkable robustness result for absolutely convergent
series that fails dramatically for conditionally convergent series. This
result is enunciated in the next theorem. We first need a definition.

Definition 4.3 Let E"_1 aj be a given series. Let {p, }j%,, be a
sequence in which every positive integer occurs once and only once (but
not necessarily in the usual order). We call {p3} a permutation of the
natural numbers.

Then the series
00

j=1

is said to be a rearrangement of the given series.

Theorem 4.7 [R.iemann, Weierstrass]
If the series 1 aj of real numbers is absolutely convergent to a (lim-
iting) sum a tIien every rearrangement of the series converges also to
1. If the series E r b3 is conditionally convergent and if p is any real
number or ±oo then there is a rearrangement of the series such that its
sequence of partial sums converges to Q.

Proof: We prove the first assertion here and explore the second in the
exercises.

Let us choose a rearrangement of the given series and denote it by
> _ 1 aps , where pi is a permutation of the positive integers. Pick e > 0.
By the hypothesis that the original series converges absolutely we may
choose an integer N > 0 such that N < m < n < oo implies that

n

1: jajj < e.
j=m

[The presence of the absolute values in the left side of this inequal-
ity will prove crucial in a moment.) Choose a positive integer M such
that M > N and the integers 1,...,N are all contained in the list
pr, p2,. . ., pm If K > M then the partial sum EK1 ai will trivially
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contain the summands al, a 2. ... a.N. Also the partial sum EK 1 app will
contain the summands al, a2i ... aN. It follows that

K K
Eaj - Eap.,
j=1 j=1

will contain only summands after the Nth one in the original series. By
inequality (*) we may conclude that

x x
Eaj -Eap,
j=1 j=1

00

IajI<E.

j=N}1

We conclude that the rearranged series converges; and it converges to
the same sum as the original series.

4.4 Some Special Series
We begin with a series that defines a special constant of mathematical
analysis.

Definition 4.4 The series

°G 1

j=o
j!

where j! = j (j - 1) (j - 2) 1 for j > 1 and 0! ` 1, is convergent
(by the Ratio Test, for instance). Its sum is denoted by the symbol e
in honor of the Swiss mathematician Leonard Euler, who first studied
it (see also Example 3.12, where the number e is studied by way of a
sequence). We shall see in Proposition 4.9 that these two approaches to
the number e are equivalent.

Like the number ir, to be considered later in this book, the number
e is one which arises repeatedly in a number of contexts in mathematics.
It has many special properties. We first relate the series definition of e
to the sequence definition:

Proposition 4.9
The limit

exists and equals e.

1 "
]im C1 +

F
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Proof: We need to compare the quantities

1

// \N
AN=-E7 and BN=I1+NI.

i=o

We use the binomial theorem to expand BN :

BN=1+ N 1 1

N
N 1 11

1 1

N N N
1 N-1

1 N-1 N-2 1

+ N N
1 1

2
+(N

) ...
N

1+ V!.(l_ 1).(1_ 2)...(1-NN1)

Notice that every summand that appears in this last equation is positive.
Thus, for 0 < M < N,

BN>1+1+1 1-1)+1 1)_(,_
/

+...+M1.
C1 N) Cl

NV ... C1- N 11

In this last inequality we hold M fixed and let//N tend to infinity. The
result is that

lim BN>1+1+2!+3j+...+M!=Am.
N-oo

Now, as M oo, the quantity Am converges to e (by the definition of
e). So we obtain

lim inf BN > e. (*)
N-oo

On the other hand, our expansion for BN allows us to observe that
BN < AN. Thus

lim sup BN < e. (**)
N-.oo
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Combining (*) and (**) we find that

e < lim inf BN < lim sup BN < e
N-oo N-»oo

-
hence that limN-, BN exists and equals e. This is the desired result. 0

REMARK 4.3 The last proof illustrates the value of the concepts
of lim inf and lim sup. For we do not know in advance that the limit of
the expressions BN exists, much less that the limit equals e. However,
the lim inf and the lim sup always exist. So we estimate those instead,
and find that they are equal and that they equal e.

The next result tells us how rapidly the partial sums AN of the series
defining e converge to e. This is of theoretical interest, but will also be
applied to determine the irrationality of e.

Proposition 4.10
With AN as above, we have that

Proof: Observe that

0<e-AN< N

1 1 1

e - AN = (N+1)1 + (N+2)1 + (N+3)1 + .. .

(N + 1)! . (1 + N + 2 + (N + 2)(N + 3) + .)
1 1 1

< (N+1)! 1+N+1+(N+1)s+... .

Now the expression in parentheses is a geometric series. It sums to
(N + 1)/N. Since AN < e, we have

e - AN=Ie - ANI

hence

Ie - ANI <
1N.Ni

proving the result. 0

Next we prove that e is an irrational number.
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Theorem 4.8
Euler's number e is irrational.

Proof: Suppose to the contrary that e is rational. Then e = p/q for
some positive integers p and q. By the preceding proposition,

0<e-Aq < 1
q - q!

or 1.
q

(*)

Now

hence

e - Aq=9 - I

q! - (e - Aq)

is an integer. But then equation (*) says that this integer lies between 0
and 1/q. In particular, this integer lies strictly between 0 and 1. That,
of course, is impossible. So e must be irrational. 0

It is a general principle of number theory that a real number that
can be approximated too rapidly by rational numbers (the degree of
rapidity being measured in terms of powers of the denominators of the
rational numbers) must be irrational. Under suitable conditions an even
stronger conclusion holds: namely the number in question turns out to
be transcendental. A transcendental number is one which is not the
solution of any polynomial equation with integer coefficients.

The subject of transcendental numbers is explored in the exercises.
The exercises also contain a sketch of a proof that e is transcendental.

In Exercise 29 of the last chapter we briefly discussed Euler's number
-y. Both this special number and also the more commonly encountered
number it arise in many contexts in mathematics. It is unknown whether
-y is rational or irrational. The number it is known to be transcenden-
tal, but it is unknown whether it + e (where e is Euler's number) is
transcendental.

In recent years, questions about the the irrationality and transcen-
dence of various numbers have become a matter of practical interest. For
these properties prove to be useful in making and breaking secret codes,
and in encrypting information so that it is accessible to some users but
not to others.

Recall that, in Example 2.1, we proved that

SN=Ej= 2
j=1
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We conclude this section with a method for summing higher powers of
j.

Say that we wish to calculate

N

Sk,N Ejk
j=1

for some positive integer k exceeding 1. We may proceed as follows:
write

(j + 1)k+l _ jk+1 = [jk+i + (k + 1) . jk + (k + 1) k k-1

2

+...+

(k+1)

2+
2

j
Summing from j = 1 to j = N yields

N f{(j+ 1)k+1 - jk+1l = 2 Sk-1.N+...
j=1

I

+(k+2) k S2.N+(k+1) S1,N+N.

The sum on the left collapses to (N + 1)k+1 - 1. We may solve for Sk.N
and obtain

Sk,N k+1
[(N+1)k+1 -1 - N - .Sk-1,N

We have succeed in expressing Sk,N in terms of S1,N, S2.N, ..., Sk-1.N.
Thus we may inductively obtain formulas for Sk,N, any k. It turns out
that

N(N + 1)(2N + 1)
S2,N = 6
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N2(N + 1)2
S3,N =

4

S4 N = (N + 1)N(2N + 1)(3N2 + 3N - 1)
30

These formulas are treated in further detail in the exercises.

119

4.5 Operations on Series
Some operations on series, such as addition, subtraction, and scalar mul-
tiplication, are straightforward. Others, such as multiplication, entail
subtleties. This section treats all these matters.

Proposition 4.11
Let

00 00

>aj and Ebj
i=1 i=1

be convergent series of real or complex numbers; assume that the series
sum to limits a and Q respectively. Then

(a) The series E', (a, + bj) converges to the limit a + Q

(b) If c is a constant then the series Er l c aj converges to c a.

Proof: We shall prove assertion (a) and leave the easier assertion (b)
as an exercise.

Pick e > 0. Choose an integer N1 so large that n > Nl implies that
the partial sum S, - E,'=1 aj satisfies IS,, - al < E/2. Choose N2 so
large that n > N2 implies that the partial sum T,a = E =1 bj satisfies
ITn -,31 < e/2. If U is the nth partial sum of the series E 1(aj +bj)
and if n > No max(Ni, N2) then

Wn(a+R:5ISn-al 2+2 =E.
Thus the sequence {Un} converges to a +,3. This proves part (a). The
proof of (b) is similar.

In order to keep our discussion of multiplication of series as straight-
forward as possible, we deal at first with absolutely convergent series.
It is convenient in this discussion to begin our sum at j = 0 instead of
j = 1. If we wish to multiply

00 00

aj and E bj ,
i=o i=o
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then we need to specify what the partial sums of the product series
should be. An obvious necessary condition that we wish to impose is
that if the first series converges to a and the second converges to ,3 then
the product series, whatever we define it to be, should converge to a. /3.

The naive method for defining the summands of the product series
is to let cj = aj bj. However, a glance at the product of two partial
sums of the given series shows that such a definition would be ignoring
the distributivity of addition.

Cauchy's idea was that the summands for the product series should
be

n

bn-j
j=0

This particular form for the summands can be easily motivated using
power series considerations (which we shall provide in Section 10.1). For
now we concentrate on verifying that this "Cauchy product" of two series
really works.

Theorem 4.9
Let Ej o aj and E'o bj be two absolutely convergent series which
converge to limits a and /3 respectively. Define the series Em=0 Cm with
summands c,,, _ aj b,,,_j - Then the series cn, converges to
a-j3.

Proof: Let An, B,,, and Cn be the partial sums of the three series in
question. We calculate that

C. = (aobo) + (aob1 + a,bo) + (aob2 + aIb1 + a2bo)

+.
.Bi-1+a2.Bn-2+...+a. - BO.

We set An = Bn - /3, each n, and rewrite the last line as

C. = ao(a+An)+a1(0+An-1)+...an (8+Ao)

=An f3+[aoan.+a1 An-1+...+a,, Ao]

Denote the expression in square brackets by the symbol pn.. Suppose
that we could show that lim...oo p = 0. Then we would have

lim Cn = lim (An . r3 + pn)n-oc n-oc
_ (lim An) - (3 + (lim

n-.oc n-x
=a-,(3+0
=a - Q.
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Thus it is enough to examine the limit of the expressions N.
Since E°_1 aj is absolutely convergent, we know that A = Et, Iasl

is a finite number. Choose e > 0. Since F_ 1 b,, converges to ,6 it follows
that A,, -+ 0. Thus we may choose an integer N > 0 such that n > N
implies that I An I < e. Thus for n = N + k, k > 0, we may estimate

IpN+kl : IAoaN+k +A1aN+k-1 ++---+ANakl
+IAN+lak-1 + )N+2ak-2 + - - - + )tN+kaOl

< IAoaN+k +AlaN+k-1 ++ +.NakI
+maxp>1 {I.N+pI} . (Iak-1I + lak-21 + ... + IaoI)

<

With N fixed, we let k -+ oo in the last inequality. Since maxi>klatl
0, we find that

limsup lpnl
n-oo

Since e > 0 was arbitrary, we conclude that

llm IpnI-'0.n-oo

This completes the proof. O

Notice that, in the proof of the theorem, we really only used the fact
that one of the given series was absolutely convergent, not that both were
absolutely convergent. Some hypothesis of this nature is necessary, as
the following example shows:

Example 4.14
Consider the Cauchy product of the two conditionally conver-
gent series

(_1)iEL (-1).i and

00off
Observe that

(-1)o(-l)m
(-1)1(-1)m-1

Cm= f m+1 + V-2 VM-

+

(-1)+"(-1)0

m-+1NJI

_ `(-1)m 1

2=o (j+1)(m+1-j)
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However, for 0 < j < rn,

-j)
Thus

M 1 _le.I?E+1=1.
j=o

We thus see that the terms of the series > Q c,,, do not tend
to zero, so the series cannot converge.

Exercises
1. Discuss convergence or divergence for each of the following series:

a - 2S'L
( ) j=1 j!

c ' ILI( ) Ej=1 ji

(e) j= 2 2

(b)

(d)

(f)

00
11 (-1)j

3j2-5j+6
2j - 1

`3'3-2j=1

2. Let p be a polynomial with integer coefficients. Let b1 > b2 > ... >
0 and assume that bj --+ 0. Prove that if (-1)P(j) is not always
positive and not always negative then in fact it will alternate in
sign so that E" 1(-1)pi>> bj will converge.

3. If bj > 0 for every j and if E'1 bj converges then prove that
Ej__1(b3)2 converges. Prove that the assertion is false if the posi-
tivity hypothesis is omitted. How about third powers?

4. If bj > 0 for every j and if E'1 bj converges then prove that
11 diverges.+bj

5. If bj > 0 for every j and if E'1 bj converges then prove that
E - converges.7=1 l+bj

6. Let p be a polynomial with no constant term. If bj > 0 for every
j and if E=1 bj converges then prove that the series E'1 p(bj)
converges.
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7. Assume that Ej=1 bj is an absolutely convergent series of real
numbers. Let sj = Ee=1 bt. Discuss convergence or divergence for
the series j=1 sj b?. Discuss convergence or divergence for the

series E°O b
j=1 1+ aj

8. If bj > 0 for every j and if F__1 bj diverges then define sj =
J b l. convergence or divergence for the series °O 11=1 e. j=1 a} .

9. Use induction to prove the formulas provided in the text for the
sum of the first N perfect squares, the first N perfect cubes, and
the first N perfect fourth powers.

* 10. Let E
1
bj be a conditionally convergent series of real numbers.

Let 0 be a real number. Prove that there is a rearrangement
of the series that converges to fl. (Hint: First observe that the
positive terms of the given series must form a divergent series.
Also, the negative terms form a divergent series. Now build the
rearrangement by choosing finitely many positive terms whose sum
"just exceeds" 0. Then add on enough negative terms so that the
sum is "just less than" (3. Repeat this oscillatory procedure.)

* 11. Let 001 aj be a conditionally convergent series of complex num-
bers. I et S be the set of all possible complex numbers to which the
various rearrangements could converge. What forms can S have?
(Hint: Experiment!)

12. Follow these steps to give another proof of the Alternating Se-
ries Test: a) Prove that the odd partial sums form an increasing
sequence; b) Prove that the even partial sums form a decreasing
sequence; c) Prove that every even partial sum majorizes all sub-
sequent odd partial sums; d) Use a pinching principle.

13. Examine the series
1 +$+ r+ +

Prove that the Root Test shows that the series converges while the
Ratio Test gives no information.

14. Check that both the Root Test and the Ratio Test give no infor-
mation for the series E}1

t , Ej 1 3. However, one of these
series is divergent and the otter is convergent.

15. A real number s is called algebraic if it satisfies a polynomial equa-
tion of the form

=0
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with the coefficients aj being integers. Prove that if we replace the
word "integers" in this definition with "rational numbers" then
the set of algebraic numbers remains the same. Prove that nP/q is
algebraic for any positive integers p, q, n.

16. Refer to Exercise 15 for terminology. A real number is called
transcendental if it is not algebraic. Prove that the number of
algebraic numbers is countable. Explain why this implies that
the number of transcendental numbers is uncountable. Thus most
real numbers are transcendental; however it is extremely difficult
to verify that any particular real number is transcendental.

17. Refer to Exercises 15 and 16 for terminology. Provide the details
of the following sketch of a proof that Euler's number e is tran-
scendental. [Note: in this argument we use some simple ideas of
calculus. These ideas will be treated in rigorous detail later in
the book.] Seeking a contradiction, we suppose that the number e
satisfies a polynomial equation of the form

*

ao+alx+...amx'" = 0

with integer coefficients a3.

(a) We may assume that as 54 0.

(b) Let p be an odd prime that will be specified later. Define

9(x) =

xP-1(x - 1)P...(x - m)P

(p-1)!
and

G(x) =

g(x) + g(1)(x) + g12)(x) + ...

9
(-P+P-1)(x).

(Here parenthetical exponents denote derivatives.) Verify
that

I (x)I<
mmP+P-1

(c) Check that
d

dx
{e-'G(x)} = -e-xg(x)
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and thus that i
ai

J
e-xg(x)dx =

0

a3G(0) - aie-3G(j) . (*)

(d) Multiply the last equation by ei, sum from j = 0 to j = m,
and use the polynomial equation that e satisfies to obtain
that m i

Eai&
J

e-xg(x)dx
i=0 0

[m mp+p-1

= - E aig(' (j) (**)L
j=0 1=0

(e) Check that f(') (j) is an integer for all values of i and all j
from 0 to m inclusive.

(f) Referring to the last step, show that in fact f(')(j) is an in-
teger divisible by p except in the case that j = 0 and i = p-1.

(g) Check that

f(P-1)(o) =
(-1)p(-2)p ... (-m)" .

Conclude that f(p-1)(0) is not divisible by p if p > m.

(h) Check that if p > Iaoj then the right side of equation (**)
consists of a sum of terms each of which is a multiple of p
except for the term -a0 f (p-1 ) (0). It follows that the sum on
the right side of (**) is a nonzero integer.

(i) Use equation (*) to check that, provided p is chosen suffi-
ciently large, the left side of (**) satisfies

m

j
ai eJ e xg(x)dx

m m(mm+2)p-I
il

e
l (p - 1)!Ia

{j=o

<1.
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(j) The last two steps contradict each other.

This proof is from [NIVI.

18. Prove Theorem 4.4.

19. Prove Theorem 4.5.

20. Let aj and F' 1 bj be convergent series of positive real num-
bers. Discuss division of these two series. Use the idea of the
Cauchy product.

21. Let Ej=1 aj and E,00=1 bj be convergent series of positive real num-
bers. Discuss convergence of Ej_1 ajbj.

22. What can you say about the convergence or divergence of

r (2j + 3)1/2 - (2j)1/2L .1/2
j=1

23. If bj > 0 and bj converges then prove that

00
1/2 1

j=1

converges for any a > 1/2. Give an example to show that the
assertion is false if a = 1/2.

24. Let aj be a sequence of real numbers. Define

a1 + a2 +...ajmj =
3

Prove that if limj- aj = 2 then 1imj-,o mj = f. Give an example
to show that the converse is not true.

25. Imitate the proof of the Root Test to give a direct proof of the
Ratio Test.

26. Prove that
sinjl

j=1

are both divergent series.

27. Prove Proposition 4.11(b).

and
E sine j

j=1 i
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28. Let E,__1 a. be a divergent series of positive terms. Prove that
there exist numbers b,, 0 < b., < a3, such that >1 bj diverges.

Similarly, let Et, c,, be a convergent series of positive terms.
Prove that there exist numbers d;, 0 < c1 < d,, such that Esi d;
converges.

Thus we see that there is no "smallest" divergent series and no
"largest" convergent series.

29. Let >9 aj and E, bj be series. Prove that if there is a constant
C > 0 such that

<
C

bj

for all j large then either both series diverge or both series con-

verge.





Chapter 5

Basic Topology

5.1 Open and Closed Sets
To specify a topology on a set is to describe certain subsets that will
play the role of neighborhoods. These sets are called open sets.

In what follows, we will use "interval notation": If a < b are real
numbers then we define

(a,b)={xER:a<x<b},
[a,b] ={xER:a<x<b},
[a,b)={xER:a<x<b},
(a,b]={xER:a<x<b}.

Intervals of the form (a, b) are called open. Those of the form [a, b] are
called closed The other two are termed half-open or half-closed. See
Figure 5.1.

Now we extend the terms "open" and "closed" to more general sets.

Definition 5.1 A set U C 1R is called open if for each x E 1R there
is an e > 0 such that the interval (x - e, x + E) is contained in U. See
Figure 5.2.

Example 5.1
The set U = {x E ]R : Ix - 31 < 2} is open. To see this, choose
a point x E U. Let e = 2 - Ix - 31 > 0. Then we claim that the
interval I = (x - e, x + e) C U.

For if t E I then

it-3[ s It-xI+Ix-31
<e+Ix-31
=(2-Ix-31)+Ix-31=2.

129
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a,b)

(a,b]

Figure 5.1. Four types of intervals.

But this means that t E U.
We have shown that t E I implies t E U. Therefore I C U.

It follows from the definition that U is open.

REMARK 5.1 The way to think about the definition of open set
is that a set is open when none of its elements is at the "edge" of the
set-each element is surrounded by other elements of the set, indeed a
whole interval of them. See Figure 5.3. The remainder of this section
will make these comments precise. I

Proposition 5.1
If UQ are open sets, for a in some (possibly uncountable) index set A.

then
U = U U"

is open.

aEA

Proof: Let x E U. By definition of union, the point x must lie in some

X-E x+E
a (a,b) x b

Figure 5.2. The neighborhood (x - e, x + e) lies in (a, b).
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point at edge of set

Figure 5.3

U,,. But UQ is open. Therefore there is an interval I = (x - e, x + e) such
that I C UQ. Therefore certainly I C U. This proves that U is open. 0

Proposition 5.2
If Ul, U2i ... , Uk are open sets then the set

k

V = n Uj

is also open.

Proof: Let x E V. Then X E U3 for each j. Since each Ut is open there
is for each j a positive number e, such that Ij = (x - ej, x + eJ) lies in
U,r. Set e = min{el,...,ek}. Then E > 0 and (x-E,x+e) C Uf for every
j. But that just means that (x - E, x + E) C V. Therefore V is open. 0

Notice the difference between these two propositions: arbitrary unions
of open sets are open. But, in order to guarantee that an intersection of
open sets is still open, we had to assume that we were only intersecting
finitely many such sets. To understand this matter bear in mind the
example of the open sets

C-1 1
U?=

The intersection of the sets U; is the singleton {0}, which is not open.
The same analysis as in the first example shows that, if a < b, then

the interval (a, b) is an open set. On the other hand, intervals of the
form (a, b] or [a, b) or [a, b] are not open. In the first instance, the point
b is the center of no interval (b-e, b+e) contained in (a, b]. Think about
the other two intervals to understand why they are not open. We call
intervals of the form (a, b) open intervals.

We are now in a position to give a complete description of all open
sets.
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Figure 5.4. An open set.

Proposition 5.3
Let U C R be an open set. Then there are countably many pairwise

disjoint open intervals I, such that

U= 01j.

See Figure 5.4.

j=1

Proof: Assume that U is an open subset of the real line. We define an
equivalence relation on the set U. The resulting equivalence classes will
be the open intervals Ip

Let a and b be elements of U. We say that a is related to b if all
real numbers between a and b are also elements of U. It is obvious that
this relation is both reflexive and symmetric. For transitivity notice
that if a is related to b and b is related to c then (assuming that a. b, c
are distinct) one of the numbers a, b, c must lie between the other two.
Assume for simplicity that a < b < c. Then all numbers between a and
c lie in U. for all such numbers are either between a and b or between b
and c or are b itself. (The other possible orderings of a, b, c are left for
you to consider.)

Thus we have an equivalence relation on the set U. Call the equiv-
alence classes {Ua}aEA We claim that each Ua is an open interval. In
fact if a, b are elements of some Ua then all points between a and b are in
U. But then a moment's thought shows that each of those "in between"
points is related to both a and b. Therefore all points between a and b
are elements of U,,,. We conclude that Ua is an interval. Is it an open
interval?

Let X E U0. Then X E U so that there is an open interval I =
(x - e, x + e) contained in U. But x is related to all the elements of I;
it follows that I C Ua. Therefore Ua is open.

We have exhibited the set U as a union of open intervals. These in-
tervals are pairwise disjoint because they arise as the equivalence classes
of an equivalence relation. Finally, each of these open intervals contains
a (different) rational number (why?). Therefore there can be at most
countably many of the intervals Ua. 0

Definition 5.2 A subset F C R is called closed if the complement
IR \ F is open. See Figure 5.5.
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Figure 5.5. A closed set.

Example 5.2

An interval of the form [a, b] = {x : a < x < b} is closed. For its
complement is (-oo, a) U (b, oo), which is the union of two open
intervals.

The finite set A = {-4, -2, 5,13} is closed because its com-
plement is

(-oc, -4) U (-4, -2) U (-2,5) U (5,13) U (13, oo)

which is open.
The set B = {1,1/2,1/3,1/4,...} U {0} is closed, for its

complement is the set

00

U (1, oo) ,(-00, 0) U U (1/(j + 1),1/j)
I=1

which is open.
Verify for yourself that if the point 0 is omitted from the

set B then the set is no longer dosed. O
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Proposition 5.4
If Ea are closed sets, for a in some (possibly uncountable) index set A,

then
E= n Ea

*EA

is closed.

Proof: This is just the contrapositive of Proposition 5.1 above: if U,, is
the complement of Ea, each a, then U. is open. Then U = U Ua is also
open. But then

E=nEa=n`(Ua)=`(UUU)=CU

is closed. 0

The fact that the set B in the last example is dosed, but that B\ {0}
is not, is placed in perspective by the next proposition:
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accumulation
point

Figure 5.6

Proposition 5.5
Let S be a set of real numbers. Then S is closed if and only if every

Cauchy sequence {sj} of elements of S has a limit which is also an
element of S.

Proof: First suppose that S is closed and let {sj } be a Cauchy sequence
in S. We know, since the reals are complete, that there is an element
s E R such that sj s. The point of this half of the proof is to see that
s E S. If this statement were false then s E T = R \ S. But T must be
open since it is the complement of a closed set. Thus there is an e > 0
such that the interval I = (s - e, s + e) C T. This means that no element
of S lies in I. In particular, Is - sj I > E for every j. This contradicts
the statement that sj -p s. We conclude that s E S.

Conversely, assume that every Cauchy sequence in S has its limit in
S. If S were not closed then its complement would not be open. Hence
there would be a point t E R \ S with the property that no interval
(t-e, t+e) lies in R\S. In other words, (t-e, t+e)f1S 54 0 for every e > 0.
Thus f o r j = 1, 2, 3, ... we may choose a point sj E (t-1/j, t+l/j)f1S. It
follows that {sj } is a sequence of elements of S that converge to t E R\S.
That contradicts our hypothesis. We conclude that S must be closed. D

Let S be a subset of R. A point x is called an accumulation point of
S if every neighborhood of x contains infinitely many distinct elements
of S. See Figure 5.6. In particular, x is an accumulation point of S if it
is the limit of a sequence of distinct elements in S. The last proposition
tells us that closed sets are characterized by the property that they
contain all of their accumulation points.

5.2 Further Properties of Open and Closed Sets
Let S C R be a set. We call b E R a boundary point of S if every
nonempty neighborhood (b - E, b + e) contains both points of S and
points of R \ S. See Figure 5.7. We denote the set of boundary points
of S by 8S.

A boundary point b might lie in S and might lie in the complement
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a boundary point

Figure 5.7

0 S

boundary points

Figure 5.8. No boundary point of S lies in S.

of S. The next example serves to illustrate the concept:

Example 5.3

Let S be the interval (0,1). Then no point of (0,1) is in the
boundary of S since every point of (0,1) has a neighborhood
that lies entirely inside (0,1). See Figure 5.8. Also, no point of
the complement of [0,1] lies in the boundary of S for a similar
reason. Indeed, the only candidates for elements of the bound-
ary of S are 0 and 1. The point 0 is an element of the bound-
ary since every neighborhood (0 - e, 0 + e) contains the points
(0, e) C S and points (-e, 0] C R \ S. A similar calculation
shows that 1 lies in the boundary of S.

Now consider the set T = [0,1]. Certainly there are no
boundary points in (0, 1), for the same reason as in the first
paragraph. And there are no boundary points in R \ [0,1], since
that set is open. Thus the only candidates for elements of the
boundary are 0 and 1. As in the first paragraph, these are both
indeed boundary points for T. See Figure 5.9.

Notice that neither of the boundary points of S lie in S
while both of the boundary points of T lie in T. 0

0 T 1

\1" boundary points '--l/
Figure 5.9. Every boundary point of T lies in T.
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an interior point

Figure 5.10

isolated points

Figure 5.11

Example 5.4

The boundary of the set Q is the entire real line. For if x is
any element of JR then every interval (x - e, x + e) contains both
rational numbers and irrational numbers.

The union of a set S with its boundary is called the closure of S,
denoted S. The next example illustrates the concept.

Example 5.5

Let S be the set of rational numbers in the interval [0, 1]. Then
the closure S of S is the entire interval [0, 1].

Let T be the open interval (0, 1). Then the closure T of T
is the closed interval [0, 1].

Definition 5.3 Let S C R. A point s E S is called an interior point
of S if there is an e > 0 such that the interval (s - e, s + e) lies in S. See
Figure 5.10. We call the set of all interior points the interior of S, and

0
we denote this set by S.

A point t E S is called an isolated point of S if there is an e > 0
such that the intersection of the interval (t - e, t + e) with S is just the
singleton {t}. See Figure 5.11.

By the definitions given here, an isolated point of a set S C_ JR is
a boundary point. For any interval (s - e, s + e) contains a point of S
(namely s itself) and points of R \ S (since s is isolated).

Proposition 5.6
Let S C R. Then each point of S is either an interior point or a

boundary point.
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Proof: Fix s E S. If s is not an interior point then no open interval
centered at s contains only elements of s. Thus any interval centered at
s contains an element of S (namely s itself) and also contains points of
]R \ S. Thus s is a boundary point of S.

Example 5.6

Let S = [0, 1]. Then the interior points of S are the elements
of (0,1). The boundary points of S are the points 0 and 1. The
set S has no isolated points.

Let T = {1,1/2,1/3,.. .} U {0}. Then the points 1, 1/2, 1/3,
... are isolated points of T. The point 0 is an accumulation point
of T. Every element of T is a boundary point, and there are no
others.

REMARK 5.2 Observe that the interior points of a set S are el-
ements of S-by their very definition. Also isolated points of S are
elements of S. However, a boundary point of S may or may not be an
element of S.

If x is an accumulation point of S then every open neighborhood of
x contains infinitely many elements of S. Hence x is either a boundary
hint of S or an interior point of S; it cannot be an isolated point of S.

Proposition 5.7
Let S be a subset of the real numbers. Then the boundary of S equals
the boundary of JR \ S.

Proof: Obvious.

The next theorem allows us to use the concept of boundary to dis-
tinguish open sets from closed sets.

Theorem 5.1
A closed set contains all of its boundary points. An open set contains
none of its boundary points.

Proof: Let S be closed and let x be an element of its boundary. If every
neighborhood of x contains points of S other than x itself then x is an
accumulation point of S hence x E S. If not every neighborhood of x
contains points of S other than x itself, then there is an e > 0 such that
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-M M
Figure 5.12

{(x - e, x) U (x, x + e)} fl s = 0. The only way that x can be an element
of 8S in this circumstance is if x E S. That is what we wished to prove.

For the other half of the theorem notice that if T is open then IT is
closed. But then IT will contain all its boundary points, which are the
same as the boundary points of T itself. Thus T can contain none of its
boundary points.

Proposition 5.8
Every nonisolated boundary point of a set S is an accumulation point

of the set S.

Proof: This proof is treated in the exercises.

The converse of the last proposition is false. For example, every
point of the set 10, 11 is an accumulation point of the set, yet only 0 and
1 are boundary points.

Definition 5.4 A subset S of the real numbers is called bounded if
there is a positive number Al such that Isl < Al for every element. s of
S. See Figure 5.12.

The next result is one of the great theorems of nineteenth century
analysis. It is essentially a restatement of the Bolzano-Weierstrass the-
orem of Section 3.2.

Theorem 5.2 [Bolzano-Weierstrass]
Every bounded, infinite subset of R has an accumulation point.

Proof: Let S be a bounded, infinite set of real numbers. Let {ay} be
a sequence of distinct elements of S. By Theorem 3.2, there is a sub-
sequence {aj,, } that converges to a limit a. Then a is an accumulation
point of S.
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Corollary 5.1
Let S C R be a closed and bounded set. If {a,} is any sequence in S,

then there is a Cauchy subsequence {ajk } that converges to an element
of S.

Proof: Merely combine the Bolzano-Weierstrass theorem with Propo-
sition 5.5 of the last section.

5.3 Compact Sets
Compact sets are sets (usually infinite) which share many of the most
important properties of finite sets. They play an important role in real
analysis.

Definition 5.5 A set S C R is called compact if every sequence in S
has a subsequence that converges to an element of S.

Proposition 5.9
A set is compact if and only if it is closed and bounded.

Proof: That a closed, bounded set has the property of compactness is
the content of Theorem 5.2 and Proposition 5.5.

Now let S be a set that is compact. If S is not bounded, then
there is an element a, of S that has absolute value larger than 1. Also
there must be an element 82 of S that has absolute value larger than 2.
Continuing, we find elements sj E S satisfying

IsiI>j

for each j. But then no subsequence of the sequence { ss } can be Cauchy.
This contradiction shows that S must be bounded.

If S is compact but S is not closed, then there is a point x which is
the limit of a sequence Is?) C S but which is not itself in S. But every
sequence in S is, by definition of "compact," supposed to have a subse-
quence converging to an element of S. For the sequence {sj } that we are
considering, x is the only candidate for the limit of a subsequence. Thus
it must be that x E S. That contradiction establishes that S is closed.

In the abstract theory of topology (where there is no notion of dis-
tance), sequences cannot be used to characterize topological properties.
Therefore a different definition of compactness is used. For interest's
sake, and for future use, we now show that the definition of compactness
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an open cover of the set S

Figure 5.13

that we have been discussing is equivalent to the one used in topology
theory. First we need a new definition.

Definition 5.6 Let S be a subset of the real numbers. A collection
of open sets {O.}aEA (each OQ is an open set of real numbers) is called
an open covering of S if

UOa2S.
aEA

See Figure 5.13.

Example 5.7

The collection C = { (1 1j, 1)}?_ 1 is an open covering of the in-
terval I = (0, 1). Observe, however, that no subcollection of C
covers I.

The collection V = {(1/j, 1)}j=1 U {(-1/5,1/5), (4/5,6/5))
is an open covering of the interval J = [0, 1]. However, not all
the elements V are actually needed to cover J. In fact

(-1/5,1/5) , (1/6,1), (4/5,6/5)

cover the interval J.

It is the distinction displayed in this example that distinguishes
compact sets from the point of view of topology. To understand the
point, we need another definition:

Definition 5.7 If C is an open covering of a set S and if V is another
open covering of S such that each element of D is also an element of C
then we call V a subcovering of C.

We call V a finite subcovering if V has just finitely many elements.

Example 5.8

The collection of intervals

C = {(j -I, i+ 1)}j01
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is an open covering of the set S = [5, 9]. The collection

V = {(j - 1,j + 1)}j_5

is a subcovering.
However, the collection

E = {(4, 6), (5, 7), (6, 8), (7, 9), (8,10)}

is a finite subcovering.
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0

Theorem 5.3 [The Heine-Borel Theorem]
A set S C R is compact if and only if every open covering C = {Oa}aEA
of S has a finite subcovering.

Proof: Assume that S is a compact set and let C = {Oa}OEA be an
open covering of S.

By Proposition 5.9, S is closed and bounded. Therefore it holds
that a = inf S is a finite real number, and an element of S. Likewise,
b = sup S is a finite real number and an element of S. Write I = [a, b].
Set

A = {x E I : C contains a finite subcover that covers S fl [a, x]} .

Then A is nonempty since a E A. Let t = sup A. Then some
element Oo of C contains t. Let s be an element of 00 to the left of t.
Then, by the definition of t, s is an element of A. So there is a finite
subcovering C' of C that covers [a, s] fl S. But then V = C' U {Oo} covers
[a, t] fl S, showing that t = sup A lies in A. But in fact V even covers
points to the right of t. Thus t cannot be the supremum of A unless
t=b.

We have learned that t must be the point b itself and that therefore
b E A. But that says that S fl [a, b] = S can be covered by finitely many
of the elements of C. That is what we wished to prove.

For the converse, assume that every open covering of S has a finite
subcovering. Let {a,, } be a sequence in S. Assume, seeking a con-
tradiction, that the sequence has no subsequence that converges to an
element of S. This must mean that for every 8 E S there is an e, > 0
such that no element of the sequence satisfies 0 < [ay - s) < E,. Let
I. = (s - e s + (,). The collection C = {I,} is then an open covering of
the set S. By hypothesis, there exists a finite subcovering 1 , ... I,,, of
open intervals that cover S. But each I,, could only contain at most one
element of the sequence {a3 }-namely st itself. We conclude that the
sequence has only finitely many distinct elements, a clear contradiction.
Thus the sequence does have a convergent subsequence.
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Example 5.9

If A C B and both sets are nonempty then A n B = A
0. A similar assertion holds when intersecting finitely many
nonempty sets Al ? A2 2 ... 2 Ak; it holds in this circum-
stance that n _1 Aj = Ak.

However, it is possible to have infinitely many nonempty
nested sets with null intersection. An example is the sets Ij =
(0,1/j). Certainly Ij 2 Ij+1 for all j yet

cc

nlj=0.

By contrast, if we take Kj = [0,1/j] then

00

n Kj = {0} .

j=1

The next proposition shows that compact sets have the intu-
itively appealing property of the Kjs rather than the unsettling
property of the Ijs.

Proposition 5.10
Let

K1 2 K2 2 ... 3 Kj D ...
be nonempty compact sets of real numbers. Set

00

1C=nK,.
j=1

Then 1C is compact and 1C 0.

Proof: Each Kj is closed and bounded hence 1C is closed and bounded.
Thus 1C is compact. Let xj E Kj, each j. Then {xj} C K1. By com-
pactness, there is a convergent subsequence {xjk } with limit xo E K1.
However {xjk }k 2 C K2. Thus xo E K2. Similar reasoning shows that
xo E K,,, for all m = 1, 2, .... In conclusion, xo E njKj = 1C.

5.4 The Cantor Set
In this section we describe the construction of a remarkable subset of R
with many pathological properties. It only begins to suggest the richness
of the structure of the real number system.
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0 1

Figure 5.14

. 0----o . .
0 1

Figure 5.15

We begin with the unit interval So = [0, 1). We extract from So its
open middle third; thus S1 = So \ (1/3,2/3). Observe that S1 consists
of two closed intervals of equal length 1/3. See Figure 5.14.

Now we construct S2 from Si by extracting from each of its two
intervals the middle third: S2 = [0, 1/9] U [2/9,3/9] U [6/9, 7/9] U [8/9,1].
Figure 5.15 shows S2.

Continuing in this fashion, we construct Si+1 from S; by extracting
the middle third from each of its component subintervals. We define the
Cantor set C to be

00

C=ns,

Notice that each of the sets S3 is closed and bounded, hence compact.
By Proposition 5.10 of the last section, C is therefore not empty. The
set C is closed and bounded, hence compact.

Proposition 5.11
The Cantor set C has zero length, in the sense that the complementary

set [0, 1] \ C has length 1.

Proof: In the construction of S1, we removed from the unit interval
one interval of length 3-1. In constructing S2, we further removed two
intervals of length 32. In constructing SW,, we removed 2j-1 intervals
of length 3-'. Thus the total length of the intervals removed from the
unit interval is

00

This last equals

E2j-1'3-j.

j=1

1
00

5E (03
The geometric series sums easily and we find that the total length of the
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intervals removed is

3 (1 -2/3) = 1.

Thus the Cantor set has length zero because its complement in the unit
interval has length one.

Proposition 5.12
The Cantor set is uncountable.

Proof: We assign to each element of the Cantor set a "label" consisting
of a sequence of Os and is that identifies its location in the set.

Fix an element x in the Cantor set. Then certainly x is in Sr . If
x is in the left half of S1, then the first digit in the "label" of x is 0;
otherwise it is 1. Likewise x E S2. By the first part of this argument,
it is either in the left half S21 of S2 (when the first digit in the label
is 0) or the right half S22 of S2 (when the first digit of the label is 1).
Whichever of these is correct, that half will consist of two intervals of
length 3-2. If x is in the leftmost of these two intervals then the second
digit of the "label" of x is 0. Otherwise the second digit is 1. Continuing
in this fashion, we may assign to x an infinite sequence of Os and Is.

Conversely, if a, b, c, ... is a sequence of Os and Is, then we may
locate a unique corresponding element y of the Cantor set. If the first
digit is a zero then y is in the left half of Sr; otherwise y is in the right
half of Sr. Likewise the second digit locates y within S2, and so forth.

Thus we have a one-to-one correspondence between the Cantor set
and the collection of all infinite sequences of zeroes and ones. [No-
tice that we are in effect thinking of the point assigned to a sequence
crc2c3 ... of Os and is as the limit of the points assigned to c1, c1c2, crc2c3, .
Thus we are using the fact that C is closed.] However, as we learned
in Chapter 1, the set of all infinite sequences of zeroes and ones is un-
countable. Thus the Cantor set is uncountable.

The Cantor set is quite thin (it has zero length) but it is large in the
sense that it has uncountably many elements. Also it is compact. The
next result reveals a surprising, and not generally well known, property
of this "thin" set:

Theorem 5.4
Let C be the Cantor set and define

S={x+y:xEC,yEC}.
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Then S = [0, 2].

Proof: We sketch the proof here and treat the details in the exer-
cises.

Since C C [0, 1] it is clear that S C [0, 2]. For the reverse inclusion,
fix an element t E [0, 2]. Our job is to find two element c and d in C
such that c + d = t.

First observe that {x + y : x E S1, y E S1 [0, 2]. Therefore there
exist xl E S1 and yl E S1 such that xl + yi = t.

Similarly, {x + y : x E S2, y E S2} = [0, 2]. Therefore there exist
x2ES2 andy2ES2suchthatx2+y2=t.

Continuing in this fashion we may find for each j numbers x2 and yj
such that xj, yj E Sj and xj +yj = t. Of course {xj} C C and {yj} C C
hence there are subsequences {xjk} and {yj,k} which converge to real
numbers c and d respectively. Since C is compact, we can be sure that
c E C and d E C. But the operation of addition respects limits, thus we
may pass to the limit as k oo in the equation

xik + Yik = t

to obtain
c+d=t.

Therefore [0, 2] C {x + y : x E C}. This completes the proof. 0

In the exercises at the end of the chapter we shall explore construc-
tions of other Cantor sets, some of which have zero length and some of
which have positive length. The Cantor set that we have discussed in
detail in the present section is sometimes distinguished with the name
"the Cantor ternary set." We shall also consider in the exercises other
ways to construct the Cantor ternary set.

Observe that, whereas any open set is the union of open intervals,
the existence of the Cantor set shows us that there is no such structure
theorem for closed sets. In fact closed intervals are atypically simple
when considered as examples of closed sets.

5.5 Connected and Disconnected Sets
IA S be a set of real numbers. We say that S is disconnected if it is
possible to find a pair of open sets U and V such that

Unse0,vns54 0,

(Un5)n(VnS)=0,
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a disconnected set

Figure 5.16

and

S= (UnS)u(VnS).
See Figure 5.16. If no such U and V exist then we call S connected

Example 5.10

The set T = {x E IIt : JxJ < 1, x $ 0} is disconnected. For take
U={x:x<0}and V={x:x>0}.Then

U n T = {x: -1 < x < 0} 0 0

and
VnT={x:0<x<1}#0.

Also (U n T) n (V n T) = 0. Clearly T = (U n T) u (V n T),
hence T is disconnected.

Example 5.11
The set X = [-1, 1] is connected. To see this, suppose to the
contrary that there exist open sets U and V such that u n x #
O,VnX,4 0,(UnX)n(VnX) =0, and

s= (UnX)u(VnX).
Choose a E U n X and b E V n X. Set

a = sup (U n [a, b]}) .

Now [a, b] C X hence U n [a, b] is disjoint from V. Thus a < b.
But 'V is closed hence a ' V. It follows that a < b.

If a E U then, because U is open, there exists an a E U such
that a < a < b. This would mean that we chose a incorrectly.
Hence a V U. But a ¢ U and a ¢ V means a ¢ X. On
the other other hand, a is the supremum of a subset of X (since
a E X, b E X, and X is an interval). Since X is a closed interval,
we conclude that a E X. This contradiction shows that X must
be connected.

With small modifications, the discussion in the last example demon-
strates that any closed interval is connected (Exercise 11). See Figure
5.17. Also (see Exercise 12), we may similarly see that any open interval
or half-open interval is connected. In fact the converse is true as well:
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Figure 5.17. A closed interval is connected.

Theorem 5.5
If S is a connected subset of R then S is an interval.
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Proof: If S is not an interval then there exist a E S, b E S and a
point t between a and b such that tit S. Define U = {x E R : x < t} and
V= {x E R : t < x}. Then U and V are open and disjoint, u n s 0,
VnS96 0, and

S=(UnS)u(VnS).
Thus S is disconnected.

We have proved the contrapositive of the statement of the theorem,
hence we are finished.

The Cantor set is not connected; indeed it is disconnected in a special
sense. Call a set S totally disconnected if for each distinct x E S, y E S,
there exist disjoint open sets U and V such that x E U, y E V, and
S=(UnS)u(VnS).

Proposition 5.13
The Cantor set is totally disconnected.

Proof: Let x, y E C be distinct and assume that x < y. Set
5 = Ix - yI. Choose j so large that 3-3 < b. Then X, y E Si, but x
and y cannot both be in the same interval of S, (since the intervals will
of length equal to 3-j). It follows that there is a point t between x
and y that is not an element of S3, hence certainly not an element of
C. SetU={s:s<t}andV={s:s>t}. ThenxEUnChence
U n C 34 0; likewise V n C 34 0. Also (U n C) n (V n C) = 0. Finally
C = (C n U) u (C n V). Thus C is totally disconnected.

5.6 Perfect Sets
A set S C R is called perfect if it is closed and if every point of S is
an accumulation point of S. The property of being perfect is a rather
special one: it means that the set has no isolated points.

Obviously a closed interval [a, b] is perfect. After all, a point x
in the interior of the interval is surrounded by an entire open interval
(x-e, x+e) of elements of the interval; moreover a is the limit of elements
from the right and b is the limit of elements from the left.
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Perhaps more surprising is that the Cantor set, a totally disconnected
set, is perfect. It is certainly closed. Now fix x E C. Then certainly
x E S1. Thus x is in one of the two intervals composing S1. One
(or perhaps both) of the endpoints of that interval does not equal x.
Call that endpoint a1. Likewise x E S2. Therefore x lies in one of
the intervals of S2. Choose an endpoint a2 of that interval which does
not equal x. Continuing in this fashion, we construct a sequence {a3}.
Notice that each of the elements of this sequence lies in the Cantor set
(why?). Finally, Ix - ajj < 3-' for each j. Therefore x is the limit of
the sequence. We have thus proved that the Cantor set is perfect.

The fundamental theorem about perfect sets tells us that such a set
must be rather large. We have

Theorem 5.6
A nonempty perfect set must be uncountable.

Proof Let S be a perfect set. Since S has accumulation points, it
cannot be finite. Therefore it is either countable or uncountable.

Seeking a contradiction, we suppose that S is countable. Write
S = {s1, s2, .}. Set U1 = (Si - 1, sl + 1). Then U1 is a neighborhood
of Si. Now Si is a limit point of S so there must be infinitely many
elements of S lying in U1. We select a bounded open interval U2 such
that U2 C Ul, U2 does not contain sl, and U2 does contain some element
of S.

Continuing in this fashion, assume that sl, ... , have been selected
and choose a bounded interval UU+1 such that (i) U3+1 C Ui, (ii) si ¢
U,+1, and (iii) UU}1 contains some element of S.

Observe that each set V, = U? fl S is closed and bounded, hence
compact. Also each Vj is nonempty by construction but Vj does not
contain sj_ 1. It follows that V = ftjVj cannot contain sl (since V2
does not), cannot contain s2 (since V3 does not), indeed cannot contain
any element of S. Hence V, being a subset of S, is empty. But V is
the decreasing intersection of nonempty compact sets, hence cannot be
empty!

This contradiction shows that S cannot be countable. So it must be
uncountable. 0

Corollary 5.2
If a < b then the closed interval [a, b] is uncountable.

Proof: The interval [a, b] is perfect. 0
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We also have a new way of seeing that the Cantor set is uncountable,
since it is perfect:

Corollary 5.3
The Cantor set is uncountable.

Exercises
0

1. Let S be any set of real numbers. Prove that S is open. Prove
that S is open if and only if S equals its interior.

2. Let S be any set of real numbers. Prove that S C 3`. Prove that
is a closed set. Prove that 3\ S is the boundary of S.

3. Let K be a compact set and let U be an open set that contains K.
Prove that there is an c > 0 such that if k E K then the interval
(k - E, k + E) is contained in U.

4. Let S be any set and c > 0. Define T = It E R : it - sl <
E for some s E S}. Prove that T is open.

5. Let S be any set and define V = It E It : It - si < 1 for some
s E S}. Is V necessarily closed?

* 6. Fix the sequence a3 = 3-j, j = 1, 2, .... Consider the set S of all
sums

00

Epjaj,

where each pj is one of the numbers 0 or 2. Show that S is the
Cantor set. Ifs is an element of S, s = > pj aj, and if µj = 0 for
all j sufficiently large, then show that s is an endpoint of one of
the intervals in one of the sets S; that were used to construct the
Cantor set in the text.

* 7. Discuss which sequences a3 of positive numbers could be used as
in Exercise 6 to construct sets which are like the Cantor set.

8. Let us examine the proof that {x + y : x E C, y E C} equals [0, 2]
more carefully.

a) Prove for each j that {x + y : x E S3, y E S;} equals the
interval [0, 2].
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b) Explain how the subsequences and yak can be chosen
to satisfy yj,k = t. Observe that it is important for the
proof that the index ik be the same for both subsequences.

c) Formulate a suitable statement concerning the assertion that
the binary operation of addition "respects limits" as required
in the argument in the text. Prove this statement and explain
how it allows us to pass to the limit in the equation xj,r+yj,c =
t.

9. Use the characterization of the Cantor set from Exercise 6 to give
a new proof of the fact that {x + y : x E C, y E C} equals the
interval [0, 21.

10. See Exercises 1 and 2 for terminology. Call a set S robust if it is
the closure of its interior. Which sets of reals are robust?

11. Imitate the example in the text to prove that any closed interval
is connected.

12. Imitate the example in the text to prove that any open interval or
half-open interval is connected.

13. Construct a Cantor-like set by removing the middle fifth from the
unit interval, removing the middle fifth of each of the remaining in-
tervals, and so on. What is the length of the set that you construct
in this fashion? Is it uncountable? Is it perfect? Is it different from
the Cantor set constructed in the text?

14. Refer to Exercise 13. Construct a Cantor set by removing the
middle third from the unit interval, removing the middle ninth
(not the middle third as in the text) from each of the remaining
intervals, removing the middle twenty-seventh from each of the
remaining intervals after that, and so on. The Cantor-like set that
results should have positive length. What is that length? Does this
Cantor set have the other properties of the Cantor set constructed
in the text?

15. Refer to Exercises 13 and 14. Let 0 < a < 1. Construct a Cantor-
like set that has length a. Verify that this set has all the properties
of the Cantor set that were discussed in the text.

16. Let X1, X2i ... each be perfect sets and suppose that Xl 2X2
.... Set x = n;X) . Is X perfect?

17. Give an example of nonempty closed sets Xl 2 X2 _ ... such that
njXj = 0.
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18. Give an example of nonempty closed sets Xl C X2 ... such that
U. X, is open.

19. Give an example of open sets Ul Q U2 ... such that ljUj is dosed
and nonempty.

20. Give an example of a totally disconnected set S C [0,1] such that
S = [0, 11.

21. What is the interior of the Cantor set? What is the boundary of
the Cantor set?

22. Write the real line as the union of two totally disconnected sets.

23. Construct a sequence a of real numbers with the property that for
every x E R there is a subsequence of a that converges to x.

24. Let S1, S2.... be closed sets and assume that UjSj = R. Prove
that at least one of the sets Sj has nonempty interior. (Hint: Use
an idea from the proof that perfect sets are uncountable.)

25. Let K be a compact set and let {UQ}QEA be an open covering of
K. Prove that there is an e > 0 such that if k E K then the
interval (k - e, k + e) lies in some U..

26. Let Ul C U2 ... be open sets and assume that each of these sets
has bounded, nonempty complement. Prove that U3Uj 34 R.

27. Exhibit a countable collection of open sets Uj such that each open
set ®C R can be written as a union of some of the sets Uj.

28. Let S be a nonempty set of real numbers. A point x is called a
condensation point of S if every neighborhood of x contains un-
countably many points of S. Prove that the set of condensation
points of S is dosed. Is it necessarily nonempty? Is it nonempty
when S is uncountable?

*

If T is an uncountable set then show that the set of its condensation
points is perfect.

29. Prove that any closed set can be written as the union of a perfect
set and a countable set. (Hint: Refer to Exercise 28.)

30. Let S be an uncountable subset of R. Prove that S must have
infinitely many accumulation points. Must it have uncountably
many?
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31. Let S be a compact set and T a closed set of real numbers. Assume
that S fl T = 0. Prove that there is a number 8 > 0 such that
Is - tj > 5 for every s E S and every t E T. Prove that the
assertion is false if we only assume that S is closed.

32. Prove that the assertion of Exercise 31 is false if we assume that
S and T are both open.

33. Let S be any set and define, for x E R,

dis(y. S) = inf{jx - sl : s E S} .

Prove that if x S then dis(x, S) > 0. If x, y E R then prove that

Idis(x, S) - dis(y, S)I c Ix - yl.

34. Let S be a set of real numbers. If S is not open then must it be
closed? If S is not closed then must it be open?

35. Prove Proposition 5.8.



Chapter 6

Limits and Continuity of
Functions

6.1 Definition and Basic Properties of the Limit of
a Function

In this chapter we are going to treat some topics that you have seen
before in your calculus class. However, we shall use the deep properties
of the real numbers that we have developed in this text to obtain im-
portant new insights. Therefore you should not think of this chapter as
review. Look at the concepts introduced here with the power of your
new understanding of analysis.

Definition 6.1 Let E C R be a set and let f be a real-valued
function with domain E. Fix a point P E P that is either in E or is an
accumulation point of E. Let a be a real number. We say that

lim f (x) = e
E3x-+P

if, for each e > 0, there is a b > 0 such that when x E E and 0 <
Ix - F <5 the

If (x) - tI < ( .

The definition makes precise the notion that we can force f (x) to
be just as close as we please to f by making x sufficiently close to P.
Notice that the definition puts the condition 0 < Ix - PI < b on x, so
that x is not allowed to take the value P. In other words we do not look
at x = P, but rather at x near to P.

Also observe that we only consider the limit of f at a point P that
is not isolated. In the exercises you will be asked to discuss why it would
be nonsensical to use the above definition to study limits at an isolated
point.

153
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Iy

Figure 6.1

Example 6.1
LetE=]R\{O}and

f (x) = x- sin(1/x) if x E E.

See Figure 6.1. Then limn o f (x) = 0. To see this, let f > 0.
Choose 8 =c. If O< Ix-01 <S then

If (x)-01=IX sin(1/x)I<lxI< 5=f,
as desired. Thus the limit exists and equals 0. 0

Example 6.2
Let E = R and

_ 1 if x is rational
g(x) - 10 if x is irrational.

Then 1itn--..p g(x) does not exist for any point P of E.
To see this, fix P E R. Seeking a contradiction, assume that

there is a limiting value e for g at P. If this is so then we take
f=1/2andwecanfind a8>0such that 0<Ix-PI <6
implies

. (*)g(x) - el < f = I
2

If we take x to be rational then (*) says that

ll - PI < 2 , (**)
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while if we take x irrational then (*) says that

10 - tI < 2 . (***)

But then the triangle inequality gives that

11-01= I(1-e)+(e-0)I
<11-eI+It-o1,

which by (**) and (***) is

<1.

This contradiction, that 1 < 1, allows us to conclude that the
limit does not exist at P.

Proposition 8.1
Let f be a function with domain E, and let either P E E or P be an

accumulation point of E. If lim.-p f(x) = t and limy.p f(x) = m
then e = m.

Proof: Let c > 0. Choose 61 > 0 such that if 0 < Ix - PI < 61 then
11(x) - e1 < E/2. Similarly choose 62 > 0 such that if 0 < Ix - PI < 62
then If(x) - ml < E/2. Define 6 to be the minimum of 61 and 62. If
0 < Ix - PI < 6 then the triangle inequality tells us that

It - mi = I(e-f(x))+(f(x)-m)I
I(e-f(x)I +If(x)-m)I

Since It - m.1 < E for every positive e we conclude that e = m. That is
the desired result.

The point of the last proposition is that if a limit is calculated by two
different methods, then the same answer will result. While of primarily
philosophical interest now, this will be important information later when
we establish the existence of certain limits.

This is a good time to observe that the limits

lim,
i

f(x)
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and

l of(P+h)
are equal in the sense that if one limit exists then so does the other and
they both have the same value.

In order to facilitate checking that certain limits exist, we now record
some elementary properties of the limit. This requires that we first recall
how functions are combined.

Suppose that f and g are each fimctions which have domain E. We
define the sum or difference of f and g to be the function

(f ± 9)(x) = f(x) ± 9(x)

the product of f and g to be the function

(f . 9)(x) = f (x) . 9(x)

and the quotient of f and g to be

Cf (x) = f(x)
9 9(x)

Notice that the quotient is only defined at points x for which g(x) # 0.
Now we have:

Theorem 6.1 (Elementary Properties of Limits of Functions]
Let f and g be functions with domain E and fix a point P that is either
in E or is an accumulation point of E. Assume that

(i) xm f (x) = f

(ii) li . g(x) = M.
X-P

Then

(a) Z im(f ± 9) (x) = e ± m

(b) lim (f . 9)(x) = @ - mX-P

(c) urn (f/g)(x) = £/m provided m # 0.

Proof: We prove part (b). Parts (a) and (c) are treated in the exer-
cises.

Let e > 0. We may also assume that e < 1. Choose 6L > 0 such that
ifxEEandO<Ix-PI <5 then

F(x) - It '- f
2((m( + 1) .
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Choose 52>0such that if xeEand 0<Ix -PI <62then

Ig(x) - Ml < Wit,
E

+ 1)
.

(Notice that this last inequality implies that I9(x)I < ImI + lei.) Let J
be the minimum of 61 and 62. If x E E and 0 < Ix - PI < 6 then

I f (x) ' 9(x) - e Ml = I (f (x) - f) ' 9(x) + (9(x) - m) ' ti
I (f (x) - 1) ' g(x)I + I (9(x) - m) 11

< (I2(Im + 1)) ' Ig(x)I + (2(l1I+ 1)) . lei

(2(Iml +
1)).(ImI+leI)+

2
E E2+2

=f.
0

Example 6.3
It is a simple matter to check that if f (x) = x then

aim f (X) = P

for every real P. (Indeed, for e > 0 we may take 6 = E.) Also if
g(x) = a is the constant function taking value a then

lim g(x) = a.
z-.P

It then follows from parts (a) and (b) of the theorem that if
f (x) is any polynomial function then

limPf(x) = f(P)

Moreover, if r(x) is any rational function (quotient of polyno-
mials) then we may also use part (c) of the theorem to conclude
that

lim r(x) = r(P)

for all points P at which the rational function r(x) is defined.
0
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Example 6.4

If x is a small, positive real number then 0 < sinx < x. This
is true because sin x is the nearest distance from the point
(cos x, sin x) to the x-axis while x is the distance from that
point to the x-axis along an arc. If e > 0 we set b = e. We
conclude that if 0 < Ix - 01 < 6 then

Isinx-01<lxI <b=E.

Since sin(-x) sin x, the same result holds when x is a neg-
ative number with small absolute value. Therefore

Iimsinx=0.
r.-O

Since

cost x = 1 - sin2 x ,

we may conclude from the preceding theorem that

urn cosx =1.

Now fix any real number P. We have

lim sin x = lim sin(P + h)
x-.P h-0

= lim sin P cos h + cos P sin h
h--.0

sin P.

We of course have used parts (a) and (b) of the theorem to
commute the limit process with addition and multiplication. A
similar argument shows that

lim cosx = cosP.
x-.P

0

REMARK 6.1 In the last example, we have used the definition of
the sine function and the cosine function that you learned in calculus.
In Chapter 9, when we learn about series of functions, we will learn a
more rigorous method for treating the trigonometric functions. I

We conclude by giving a characterization of the limit of a function
using sequences.
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Proposition 6.2
Let f be a function with domain E and P be either an element of E or

an accumulation point of E. Then

limp f (X) = L (*)

if and only if for any sequence {a, } C E\ {P} satisfying 1imj-. aj = P
it holds that

ji

o
f(aj) = L

Proof: Assume that condition (*) fails. Then there is an e > 0 such that
for no 6 > 0 is it the case that when 0 < Ix - PI < b then If (x) -11 < e.
Thus for each b = 1/j we may choose a number aj E E \ {P} with
0 < jaj - PI < 1/j and If (a3) - LI > e. But then condition (**) fails for
this sequence {aj }.

If condition (**) fails then there is some sequence {aj} such that
limj-. aj = P but limj-. f (aj) L. This means that there is an e > 0
such that for infinitely many aj it holds that If (aj) - Lj _> e. But then,
no matter how small b > 0, there will be an aj satisfying 0 < Jaj -PI < 6
(since aj -> P) and If (aj) - L) > e. Thus (*) fails.

6.2 Continuous Functions

Definition 6.2 Let E C K be a set and let f be a real-valued function
with domain E. Fix a point P E E. We say that f is continuous at P if

.limz P AX) = f (P)

Notice that, in the definition of continuity of f at the point P, we
take P E E and we allow P not to be an accumulation point of E. When
P is isolated, any function is automatically continuous at P. When
P is not isolated, there will be several interesting characterizations of
continuity at P.

We learned from the penultimate example of Section 1 that polyno-
mial functions are continuous at every real x. So are the transcendental
functions sin x, and cos x (see Example 6.4). A rational function is con-
tinuous at every point of its domain.

Example 6.5
The function

h(x) _ sin 1/x if x 34 0
1 ifx=0
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Figure 6.2

is discontinuous at 0. See Figure 6.2. The reason is that

lien h(x)
x-o

does not exist. (Details of this assertion are left for you: notice
that h(1/(a-7r)) = 0 while h(2/[(4j + 1)7r] = 1 for j = 1, 2,....)

The function

k(x) x sin 1/x ifx 0
1 ifx=0

is also discontinuous at x = 0. This time the limit limy-o k(x)
exists (see Example 6.1); but the limit does not agree with k(0).

However, the function

k(x) =
0 ifx = 0{x.sin1/xifzo

is continuous at x = 0 because the limit at 0 exists and agrees
with the value of the function there. See Figure 6.3. D

The arithmetic operations +, -, x, and = preserve continuity (so
long as we avoid division by zero). We now formulate this assertion as
a theorem.

Theorem 6.2
Let f and g be functions with domain E and let P be a point of E.

If f and g are continuous at P then so are f ± g, f g, and (provided
g(P) 0 0) f - g.
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Figure 6.3

Proof: Apply Theorem 6.1 of Section 1. 0

Continuous functions may also be characterized using sequences:

Proposition 6.3
Let f be a function with domain E and fix P E E. The function f is

continuous at P if and only if for every sequence {aj} C E satisfying
limb-. a3 = P it holds that

lim f(ai) = f(P).j-00

Proof: Apply Proposition 6.2 of Section 1.

Recall that if g is a function with domain D and range E and if f
is a function with domain E and range F then the composition off and
gis

.f a g(x) = f (g(x))

See Figure 6.4.

Proposition 6.4
Let g have domain D and range E and let f have domain E and range F.

Let P E D. Assume that g is continuous at P and that f is continuous
at g(P). Then fog is continuous at P.
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8 f

Figure 6.4

Proof: Let {aj } be any sequence in D such that limj _ ,, aj = P. Then

limn f og(ai) =1i nf(q(ai)) = f Cjlinnq(aj)

= f (g (lira ai)) = f (g(P)) = f o 9(P)
00

Now apply Proposition 6.2.

REMARK 6.2 It is not the case that if

lim g(x) = Q
x-+P

and

then

tin) f(t)=m

line f o g(x) = M.

A counterexample is given by the functions

g(x) = 0

f(x)=f2ifx#0

5ifx=0.
Notice that limz-o g(x) = 0, limt-.o f (x) = 2. yet limS_,o f o g(x) = 5.

The additional hypothesis that f be continuous at a is necessary
in order to guarantee that the limit of the composition will behave as
expected. I
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Next we explore the topological approach to the concept of conti-
nuity. Whereas the analytic approach that we have been discussing so
far considers continuity one point at a time, the topological approach
considers all points simultaneously. Let us call a function continuous if
it is continuous at every point of its domain.

Definition 6.3 Let f be a function with domain E and let W be
any set of real numbers. We define

f-'(W) ={xEE: f(x) E W}.

We sometimes refer to f -1(W) as the inverse image of W under f.

Theorem 8.3
Let f be a function with domain E. The function f is continuous if

and only if the inverse image of any open set under f is the intersection
of E with an open set.

In particular, if E is open then f is continuous if and only if the
inverse image of any open set under f is open.

Proof: Assume that f is continuous. Let 0 be any open set and let
P E f- 1 (0). Then, by definition, f (P) E 0. Since 0 is open, there is
an e > 0 such that the interval (f (P) - e, f (P) + e) lies in 0. By the
continuity of f we may select a 6 > 0 such that if x E E and Ix - PI < 5
then If (x) - f (P)) < E. In other words, if x E E and Ix - PI < 6
then f (x) E 0 or x E f 1(0). Thus we have found an open interval
I = (P - 6, P + 6) about P whose intersection with E is contained in
f -1(0). So f -1(0) is the intersection of E with an open set.

Conversely, suppose that for any open set 0 C ]R we have that
f '(0) is the intersection of E with an open set. Fix P E E. Choose
e > 0. Then the interval (f (P)-E, f (P)+e) is an open set. By hypothesis
the set f'1((f(P) - e, f (P) + e)) is the intersection of E with an open
set. This set certainly contains the point P. Thus there is a 6 > 0 such
that

En(P-5,P+b) c f-1((f(P)-E,f(P)+E)).
But that just says that

f(En(P-6,P+b))g(f(P)-E,f(P)+e).

In other words, if Ix - PI < 6 and x E E then If (x) - f (P)l < e. But
that means that f is continuous at P. 0
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REMARK 6.3 Since any open subset of the real numbers is a
countable union of intervals then-in order to check that the inverse
image under a function f of every open set is open-it is enough to check
that the inverse image of any open interval is open. This is frequently
easy to do.

For example, if f (x) = x2 then the inverse image of an open interval
(a,b)is (-f,-fa)U(f,f) if a>0,is (-f,v)if a<0,b>0,
and is 0 if a < b < 0. Thus the function f is continuous.

Note that, by contrast, it is somewhat tedious to give an e - b proof
of the continuity of f (x) = x2. 1

Corollary 6.1
Let f be a function with domain E. The function f is continuous if and
only if the inverse image of any closed set F under f is the intersection
of E with some closed set.

In particular, if E is closed then f is continuous if and only if the
inverse image of any closed set F under f is closed.

Proof: It is enough to prove that

f-1 (`F) = c (f-' (F))

We leave this assertion as an exercise for you. 0

6.3 Topological Properties and Continuity
Recall that in Chapter 5 we learned a characterization of compact sets
in terms of open covers. In Section 2 of the present chapter we learned
a characterization of continuous functions in terms of inverse images of
open sets. Thus it is not surprising that compact sets and continuous
functions interact in a natural way. We explore this interaction in the
present section.

Definition 6.4 Let f be a function with domain E and let L be a
subset of E. We define

f(L) = {f(x) : x E L).

The set f (L) is called the image of L under f. See Figure 6.5.

Theorem 6.4
The image of a compact set under a continuous function is also compact.
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I- f ti

F(L)

Figure 6.5

Proof: Let f be a continuous function with domain E and let K be a
subset of E that is compact. Our job is to show that f (K) is compact.

Let C = {OQ } be an open covering of f (K). Since f is continuous
we know that, for each a, the set f -1(OQ) is the intersection of E with
an open set UQ. Let C = {UQ}QEA. Since C covers f(K) it follows that
C covers K. But K is compact; therefore (Theorem 5.3) there is a finite
subcovering

{UQ, , Ua2, ... UQ.n }

of K. But then it follows that f (UQ, n E),. .. , flu, fl E) covers f (K),
hence

OQ, , 002, ... , 00-

covers f (K).
We have taken an arbitrary open cover C for f (K) and extracted

from it a finite subcovering. It follows that f (K) is compact. 0

It is not the case that the continuous image of a closed set is closed.
For instance, take f (x) = 1/(1 +xa) and E = Ilt: the set E is closed and
f is continuous but f (E) = (0,11 is not dosed.

It is also not the case that the continuous image of a bounded set
is bounded. As an example, take f (x) = 1/x and E = (0,1). Then E is
bounded and f continuous but f (E) = (1, oc) is unbounded.

However, the combined properties of closedness and boundedness
(that is, compactness) are preserved. That is the content of the preced-
ing theorem.

Corollary 6.2
Let f be a continuous function with compact domain K. Then there is

a number L such that
If(x)l < L

for all x E K.
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Proof: We know from the theorem that f (K) is compact. By Proposi-
tion 5.9, we conclude that f (K) is bounded. Thus there is a number L
such that (ti < L for all t E f (K). But that is just the assertion that we
wish to prove.

In fact we can prove an important strengthening of the corollary.
Since f (K) is compact, it contains its supremum C and its infimum c.
Therefore there must be a number M E K such that f(M) = C and a
number m E K such that f (m) = c. In other words, f (m) f (x)
f (M) for all x E K. We summarize:

Theorem 6.5
Let f be a continuous function on a compact set K. Then there exist
numbers m and M in K such that f (m) _< f (x) < f (M) for all x E K.
We call m an absolute minimum for f on K and Al an absolute maximum
for f on K. We call f (m) the absolute minimum value for f on K and
f(M) the absolute maximum value for f on K.

Notice that, in the last theorem, Al and m need not be unique.
For instance, the function sin x on the compact interval 10,47r] has an
absolute minimum at 37r/2 and 71r/2. It has an absolute maximum at
7r/2 and at 57r/2.

Now we define a refined type of continuity called "uniform continu-
ity." We shall learn that this new notion of continuous function arises
naturally for a continuous function on a compact set. It will also play
an important role in our later studies, especially in the context of the
integral.

Definition 6.5 Let f be a function with domain E. We say that f is
uniformly continuous on E if, for any e > 0, there is a 6 > 0 such that,
whenever s, t E E and Is - tj < 6, then If (s) - f (t) I < E.

Observe that "uniform continuity" differs from "continuity" in that
it treats all points of the domain simultaneously: the 6 > 0 that is chosen
is independent of the points s, t E E. This difference is highlighted by
the next example.
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Example 6.6

Suppose that a function f : R - R satisfies the condition

If (s) - f (t)I <- C Is - tI, (*)

where C is some positive constant. This is called a Lipachitz
condition, and it arises frequently in analysis. Let e > 0 and set
6 = e/C. If Ix - uI < a then, by (*),

=e.

It follows that f is uniformly continuous.

Example 6.7
Consider the function f (x) = x2. Fix a point P E R, P > 0,
and let e > 0. In order to guarantee that If (x) - f (P) I < c we
must have (for x > 0)

Ix2-P2[<e

or

IX-PI <
ex+P

Since x will range over a neighborhood of P, we see that the
required d in the definition of continuity cannot be larger than
e/(2P). In fact the choice Ix - PI < a = e/(2P + 1) will do the
job.

Put in slightly different words, let c = 1. Then I f U + 1/j) -
f(j)I > e = 1 for any j. Thus, for this e, we may not take d to
be 1/j for any j. So no uniform b exists.

Thus the choice of & depends not only on a (which we have
come to expect) but also on P. In particular, f is not uniformly
continuous on R. This a quantitative reflection of the fact that
the graph of f becomes ever steeper as the variable moves to
the right.

Notice that the same calculation shows that the function
f with restricted domain [a, b], 0 < a < b < oo, is uniformly
continuous. That is because, when the function is restricted to
[a, b], its slope does not become arbitrarily large. See Figure 6.6.
0

Now the main result about uniform continuity is the following:

Theorem 6.6
Let f be a continuous function with compact domain K. Then f is

uniformly continuous on K.
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Figure 6.6

Proof: Pick f > 0. By the definition of continuity there is for each point
xEKanumber dx>0such that ifIx-tl <55thenlf(t)-f(x)I <E/2.
The intervals Ix = (x - b=/2, x + 6x/2) form an open covering of K.
Since K is compact, we may therefore (by Theorem 5.3) extract a finite
subcovering

Now let 5 = min{5x, /2,..., Sxm /2} > 0. If s, t E K and Is - tl < 5
then s E Ix, for some 1 < j < m. It follows that

Is - x,I < bxj/2

and

It - xjl < It-sl+Is-x,I<6 +6xi/2<6x,/2+bxi/2=6x,.

We know that

If (s) -f(t) I <- If(s) - f(x,)I + I1(xi) - f(t)I

But since each of s and t is within &, of xj we may conclude that the
last line is less than

E E+2=E.

Notice that our choice of 5 does not depend on s and t (indeed, we chose
5 before we chose s and t). We conclude that f is uniformly continuous.

0
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REMARK 6.4 Where in the proof did the compactness play a role?
We defined 6 to be the minimum of In order to guarantee
that 6 be positive it is crucial that we be taking the minimum of tely
many positive numbers. So we needed a finite subcovering.

Example 6.8
The function f (x) = sin(1/x) is continuous on the domain E _
(0, oo) since it is the composition of continuous functions (refer
again to Figure 6.2). However, it is not uniformly continuous
since

2jrI )-f 4+1a =1f (
for j = 1,2 ..... Thus, even though the arguments are becoming
arbitrarily close together the images of these arguments remain
bounded apart. We conclude that f cannot be uniformly con-
tinuous. See Figure 6.2.

However, if f is considered as a function on any interval of
the form [a, b], 0 < a < b < oo, then the preceding theorem tells
us that f is uniformly continuous.

As an exercise, you should check that

9(x) = x sin(1/x) if x 0 0
10 ifx=0

is uniformly continuous on any interval of the form [-N, N]. See Figure
6.3.

Next we show that continuous functions preserve connectedness.

Theorem 6.7
Let f be a continuous function with domain an open interval I. Suppose
that L is a connected subset of I. Then f (L) is connected.

Proof: Suppose to the contrary that there are open sets U and V such
that

Unf(L) 360,Vnf(L) 160,

(U n f(L)) n (V n f(L)) = 0,

and
f(L) = (U n f(L)) u (V n f(L)) .

Since f is continuous, f -1(U) and f -'(V) are open. They each have
nonempty intersection with L since Un f (L) and V fl f (L) are nonempty.
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Figure 6.7

By the definition of f -1, they are certainly disjoint. And since U U V
contains f (L) it follows, by definition, that f -1(U) U f - 1(V) contains
L. But this shows that L is disconnected, and that is a contradiction. O

Corollary 6.3 [The Intermediate Value Theorem]
Let f be a continuous function whose domain contains the interval [a, b].
Let y be a number that lies between f (a) and f (b). Then there is a
number c between a and b such that f (c) = y. Refer to Figure 6.7.

Proof: The set [a, b] is connected. Therefore f ([a, b]) is connected. But
f ([a, b]) contains the points f (a) and f (b). By connectivity, f ([a, b] )
must contain the interval that has f (a) and f (b) as endpoints. In par-
ticular, f ([a, b]) must contain any number y that lies between f (a) and
f (b). But this just says that there is a number c lying between a and b
such that f (c) = y. That is the desired conclusion. 0

6.4 Classifying Discontinuities and Monotonicity
We begin by refining our notion of limit:

Definition 6.6 Fix P E R. Let f be a function with domain E. We
say that f has left limit a at P, and write

lim f (x) = e
P-
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discontinuity of the first kind discontinuity of the second kind

Figure 6.8

if, for every e > 0, there is a 6 > 0 such that, whenever x E E and
P - 5 < x < P, then it holds that

If(x) - tI < E.

We say that f has right limit m at P, and write

lim f (x) = mp+

if, for every e > 0, there is a 6 > 0 such that, whenever x E E and
P < x < P + 6, then it holds that

If(x) - mI < E.

This definition simply formalizes the notion of either letting x tend
to P from the left only or from the right only.

Let f be a function with domain E. Let P in E and assume that
f is discontinuous at P. There are two ways in which this discontinuity
can occur:

1. If limx p- f (x) and f (x) both exist but either do not
equal each other or do not equal f (P) then we say that f has a
discontinuity of the first kind (or sometimes a simple discontinuity)
at P.

II. If either limx-p- does not exist or limx p+ does not exist then
we say that f has a discontinuity of the second kind at P.

Refer to Figure 6.8.
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Figure 6.9

Example 6.9
Define

f(x) _ sin(1/x) if x 54 0
0 ifx=0

1 ifx>0
g(x) = 0 ifx = 0

I-lifx<O
h(x) _ 1 if x is irrational

0 ifx is rational
Then f has a discontinuity of the second kind at 0 while g

has a discontinuity of the first kind at 0. The function h. has a
discontinuity of the second kind at every point.

Definition 6.7 Let f be a function whose domain contains an open
interval (a, b). We say that f is monotonically increasing on (a, b) if,
whenever a < s < t < b, it holds that f (s) < f (t). We say that f is
monotonically decreasing on (a, b) if, whenever a < s < t < b, it holds
that f (s) > f (t). See Figure 6.9.

Functions which are either monotonically increasing or monotoni-
cally decreasing are simply referred to as "monotonic" or "monotone."
Compare with the definition of monotonic sequences in Section 3.1.

As with sequences, the word "monotonic" is superfluous in many
contexts. But its use is traditional and occasionally convenient.
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Proposition 6.5
Let f be a monotonic function on an open interval (a, b). Then all of

the discontinuities off are of the first kind.

Proof: It is enough to show that for each P E (a, b) the limits

liP-f(x)

and

lim f (X)
P+

exist.
Let us first assume that f is monotonically increasing. Fix P E

(a, b). If a < s < P then f (s) < f (P). Therefore S = {f(8) : a < s < P}
is bounded above. Let M be the least upper bound of S. Pick c > 0.
By definition of least upper bound there must be an f (s) E S such that
If(s) - MI < E. Let6=IP-al. IfP - b<t<P then s <t <P
and f (s) < f (t) < M or If (t) - M I < e. Thus limx-p- f (x) exists and
equals M.

If we set m equal to the infimum of the set T = { f (t) : P < t < b}
then a similar argument shows that limx-p+ f (x) exists and equals m.
That completes the proof. 0

Corollary 6.4
Let f be a monotonic function on an interval (a, b). Then f has at most

countably many discontinuities.

Proof: Assume for simplicity that f is monotonically increasing. If P
is a discontinuity then the proposition tells us that

zlim f(x) < xtim f(x)

Therefore there is a rational number qp between limx. p- f (x) and
limx.p+ f (x). Notice that different discontinuities will have different
rational numbers associated to them because if P is another discontinu-
ity and, say, P < P then

.x1lin f (x) < q p < xlif (x) < xlim f (x) < qp < xli
p+

f (x)

Thus we have exhibited a one-to-one function of the set of disconti-
nuities of f into the set of rational numbers. It follows that the set of
discontinuities is countable. 0
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A continuous function f has the property that the inverse image
under f of any open set is open. However, it is not in general true that
the image under f itself of any open set is open. A counterexample is
the function f (x) = x2 and the open set 0 = (-1.1) whose image under
f is [0, 1). However, with some additional hypotheses, it is the case that
continuous functions take open sets to open sets:

Theorem 6.8
Let f be a continuous function whose domain is a compact set K. Let
O be any open set in R. Then f (K f1 O) has the form f (K) f1U for some
open set U C R.

Proof: Let E = K \ 0. Then E is closed (because K is) and is bounded
(because K is). Thus E is compact. By Theorem 6.4, f (E) must be
compact. In particular, it is closed. Let U = R \ f (E). Then U is open
and f (K n O) = f (K) fl U. That is the desired result. 0

Suppose that f is a function on (a, b) such that a < s < t < b implies
f (s) < f (t). Such a function is called strictly monotonically increasing
(strictly monotonically decreasing functions are defined similarly). It is
clear that a strictly monotonically increasing (resp. decreasing) function
is one-to-one, hence has an inverse. Now we prove:

Theorem 6.9
Let f be a strictly monotone, continuous function with domain [a, b].
Then f-1 exists and is continuous.

Proof: Assume without loss of generality that f is strictly monotone
increasing. Let us extend f to the entire real line by defining

(x - a) + f (a) if x < a
f(x)= as given if a < x < b

1(x-b)+f(b) ifx> b.

See Figure 6.10. Then it is easy to see that this extended version off is
still continuous and is strictly monotone increasing on all of R.

That f-1 exists has already been discussed. The extended function
f takes any open interval (c, d) to the open interval (f (c), f (d)). Since
any open set is a union of open intervals, we see that f takes any open
set to an open set. In other words, [f -1 ] ^ 1 takes open sets to open sets.
But this just says that f-1 is continuous.
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Figure 6.10

Since the inverse of the extended function f is continuous, then so
is the inverse of the original function f. That completes the proof. O

Exercises
1. Let f and g be functions on a set A = (a, c) U (c, b) and assume

that f (x) < g(x) for all x E A. Assuming that both limits exist,
show that

lim f(x) < lim g(x).
x--c x-+c

Does the conclusion improve if we assume that f (x) < g(x) for all
xEA?

2. If f is defined on a set A = (a, c) U (c, b) and if limx-, f (x) = r > 0
then prove that there is a 8 > 0 such that if 0 < Ix - cl < 5 then
f(x)( > r/2.

3. Give an example of a function f for which the situation in Exercise
2 obtains but such that f is not continuous at the point c.

4. Give an example of a continuous function f and a connected set
E such that f -1(E) is not connected. Is there a condition you can
add that will force f -1(E) to be connected?
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5. Give an example of a continuous function f and a compact set K
such that f -1(K) is not a compact set. Is there a condition you
can add that will force f -1 (K) to be compact?

6. Let A be any countable subset of the reals. Construct a monotone
increasing function whose set of points of discontinuity is precisely
the set A. Explain why this is, in general, impossible for an un-
countable set A.

7. Let 0 < a < 1. A function f with domain E said to satisfy a
Lipschitz condition of order a if there is a constant C > 0 such
that for any s, t E E it holds that If(s) - f (t) I < C- Cs-t. Prove
that such a function must be uniformly continuous.

8. Let S be any subset of R. Define the function

f (x) = inf{lx - .s : s E S} .

Prove that f is uniformly continuous.

9. Define the function

_ 0 if x is irrational
g(x) x if x is rational

At which points x is g continuous? At which points is it discon-
tinuous?

10. Define the function g(x) to take the value 0 at irrational values of
x and to take the value 1/q when x = p/q is a rational number in
lowest terms, q > 0. At which points is g continuous? At which
points is the function discontinuous?

11. Let f be any function whose domain is the entire real line. If A and
B are disjoint sets does it follow that f(A) and f(B) are disjoint
sets? If C and D are disjoint sets does it follow that f -'(C) and
f -1(D) are disjoint?

12. Let f be any function whose domain is the entire real line. If A
and B are sets then is f (A U B) = f (A) U f (B)? If C and D are
sets then is f -1(C U D) = f -1(C) U f -1(D)? What is the answer
to these questions if we replace U by fl?

13. Give an example of two functions, discontinuous at x = 0, whose
sum is continuous at x = 0. Give an example of two such functions
whose product is continuous at x = 0. How does the problem
change if we replace "product" by "quotient"?



EXERCISES 177

14. Let f be a function with domain the real numbers. If f2(x) =
f (x) f (x) is continuous does it follow that f is continuous? If
f 3 (x) = f (x) f (x) f (x) is continuous does it follow that f is
continuous?

15. Fix an interval (a, b). Is the collection of monotone increasing
functions on (a, b) closed under +, -, x, or -?

16. TRUE or FALSE: If f is a function with domain and range the
real numbers and which is both one-to-one and onto then f must
be either monotone increasing or monotone decreasing. Does your
answer change if we assume that f is continuous?

17. Prove that the function f (x) = sin x can be written, on the interval
(0, 4ir), as the difference of two monotone increasing functions.
What about on the entire real line?

18. In the Remark in the text following Proposition 6.7 we asserted
a generalization of that proposition. Prove this generalization.
[Hint: The function g need not be continuous at P.]

19. Let f be a continuous function whose domain contains a dosed,
bounded interval [a, b]. What topological properties does f ([a, b])
possess? Is this set necessarily an interval?

* 20. A function f from an interval (a, b) to an interval (c, d) is called
proper if for any compact set K C (c, d) it holds that f (K) is
compact. Prove that if f is proper then either

xllim f(x) =cor xllim f(x) = d.

Likewise prove that either

lim f (x) =cor lim f (x) = d.xb- x-+b-

21. We know that the continuous image of a connected set (i.e. an
interval) is also a connected set (another interval). Suppose now
that A is the union of k disjoint intervals and that f is a continuous
function. What can you say about the set f (A)?

22. A function f with domain A and range B is called a homeomor-
phism if it is one-to-one, onto, continuous, and has continuous
inverse. If such an f exists then we say that A and B are homeo-
morphic. Which sets of reals are homeomorphic to the open unit
interval (0,1)? Which sets of reals are homeomorphic to the closed
unit interval [0, 1]?
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23. Let f be a continuous function with domain [0, 1] and range [0, 1].
Prove that there exists a point P E [0, 1] such that f (P) = P.
(Hint: Apply the Intermediate Value theorem to the function
g(x) = f(x) - x.) Prove that this result is false if the domain
and range of the function are both (0, 1).

24. Refer to Exercise 22 for terminology. Show that there is no home-
omorphism from the real line to the interval [0, 1).

25. Is the composition of uniformly continuous functions uniformly
continuous?

26. Let f be a continuous function and let {a3 } be a Cauchy sequence
in the domain of f . Does it follow that if (a,) } is a Cauchy se-
quence? What if we assume instead that f is uniformly continu-
ous?

27. Let E be any closed set of real numbers. Prove that there is a
continuous function f with domain R such that {x : f (x) = 0} _
E.

28. Let E and F be disjoint closed sets of real numbers. Prove that
there is a continuous function f with domain the real numbers
such that {x: f (x) = 0} = E and {x: f (x) = 11 = F.

29. If K and L are sets then define

K and L K
and L are that K + L is closed?

30. Let f be a function with domain R. Prove that the set of discon-
tinuities of the first kind for f is countable. (Hint: If the left and
right limits at a point disagree then you can slip a rational num-
ber between them; but the same left and right limits can occur at
different points of the domain so you must use rational numbers
to keep track of them as well.)

31. Prove parts (a) and (c) of Theorem 6.1.

32. Let f be a continuous function whose domain contains an open
interval (a, b). What form can f (a, b) have? (Hint: There are just
four possibilities.)

33. Let I C P be an open interval and f : I IR a function. We say
that f is convex if whenever a,)3 E I and 0 < t < 1 then

f((1 - t)a+t/3) < (1 - t)f(a)+tf($).

*
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Prove that a convex function must be continuous. What does this
definition of convex function have to do with the notion of "concave
up" that you learned in calculus?





Chapter 7

Differentiation of Functions

7.1 The Concept of Derivative
Let f be a function with domain an open interval I. If X E I then the
quantity

f(t) - f(x)
t-x

measures the slope of the chord of the graph off that connects the points
(x, f (x)) and (t, f (t)). See Figure 7.1. If we let t - x then the limit
of the quantity represented by this "Newton quotient" should represent
the slope of the graph at the point x. These considerations motivate the
definition of the derivative:

Definition 7.1 If f is a function with domain an open interval I
and if x E I then the limit

lim f (t) - AX)
t-.x t-x

when it exists, is called the derivative of f at x. See Figure 7.2. If the
derivative of f at x exists then we say that f is differentiable at x. If f
is differentiable at every x E I then we say that f is differentiable on I.

We write the derivative of f at x either as

or
d
dxf or dx'

We begin our discussion of the derivative by establishing some basic
properties and relating the notion of derivative to continuity.

Lemma 7.1
If f is differentiable at a point x then f is continuous at x. In particular,
limt.x At) = f (x).

181
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Figure 7.1

Figure 7.2



7.1 The Concept of Derivative

Proof: We use Theorem 6.1 (b) about limits to see that

lim (At) - f (x)) =slim ((t - x) f(t)
-

Xf

I
= lim(t - x) - lim f(t) -f (x)t-.x t-.x t - X
=0 f (x)
= 0.

183

Therefore limt, f (t) = f (x) and f is continuous at x. 0

Thus all differentiable functions are continuous: differentiability is a
stronger property than continuity. Observe that the function f(x) = lxj
is continuous at every x but is not differentiable at 0. So continuity does
not imply differentiability. Details appear in Example 7.1.

Theorem 7.1
Assume that f and g are functions with domain an open interval I and
that f and g are differentiable at x E I. Then f ± g, f - g, and f 1g are
differentiable at x (for f 1g we assume that g(x) # 0.) Moreover

(a) (f ±9)'(x) = f(x) ± 9'(x);

(b) (f - 9)'(x) = f(x) g(x) + f (x) g'(x);

(C\9/)
f ' (x) = 9(x) . f'(x) - f (x) . 9'(x)

92(x)

Proof: Assertion (a) is easy and we leave it as an exercise for you.
For (b), we write

lim (f 9)(t) - (f . 9)(x)
t-x t-x lim ((1(t) -

t-.x t - x
+ (9(t) - 9(x)) AX) )

t - x J

= lim ((f (t) - f (x)) 9(t)
)t - x

+ lim ( (9(t) - 9(x)) . f (x) )
t-.x t - x J

= lim (f (t) - f (x)) (lim 9(t)t-x t - x ) It-z)
+ lim

((9(t)
t - x(x))) (lim f(X)) ,t-X
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where we have used Theorem 6.1 about limits. Now the first limit is
the derivative of f at x, while the third limit is the derivative of g at x.
Also notice that the limit of g(t) equals g(x) by the lemma. The result
is that the last line equals

f (x) - 9(x) + 9' (x) - f (x)

as desired.
To prove (c), write

lim (f/9) (t) - (f/9)(x) = lim 1 (f(t) - f(x)
9(x)t-x t - x t-.x9(t)-g(x) ` t - x

g(t) - 9(x)
t - x . f(x))

The proof is now completed by using Theorem 6.1 about limits to
evaluate the individual limits in this expression. 0

Example 7.1

That f (x) = x is differentiable follows from

limt-x=1.
t-xt -x

Any constant function is differentiable (with derivative identi-
cally zero) by a similar argument. It follows from the theorem
that any polynomial function is differentiable.

On the other hand, the continuous function f (x) = JxJ is
not differentiable at the point x = 0. This is so because

iti - lol = -t-0
t--0m- t-x t--0m- t-0

--1

while
itl - lol t -0
t- x = tlio f- 0- 1.

So the required limit does not exist. 0

Since the subject of differential calculus is concerned with learning
uses of the derivative, it concentrates on functions which are differen-
tiable. One comes away from the subject with the impression that most
functions are differentiable except at a few isolated points-as is the case
with the function f(x) = Ix 1. Indeed this was what the mathematicians
of the nineteenth century thought. Therefore it came as a shock when
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n even (n+ l) odd

Figure 7.3

Karl Weierstrass produced a continuous function that is not differen-
tiable at any point. In a sense that will be made precise in Chapter 14,
most continuous functions are of this nature: their graphs "wiggle" so
much that they cannot have a tangent line at any point. Now we turn
to an elegant variant of the example of Weierstrass that is due to B. L.
van der Waerden (1903-1996).

Theorem 7.2
Define a function vp with domain R by the rule

x-n ifn<x<n+landniseven
1P(x) n+1-xifn<x<n+landn is odd

for every integer n. The graph of this function is exhibited in Figure
7.3. Then the function

00

f(x)_E(')" 0(4'x)
j=1 4

is continuous at every real x and differentiable at no real x.

Proof: Since we have not yet discussed series of functions, we take a
moment to understand the definition of f. Fix a real x. Then the series
becomes a series of numbers, and the jth summand does not exceed
(a in absolute value. Thus the series converges absolutely; therefore
it converges. So it is clear that the displayed formula defines a function
of X.

Step I: f is continuous. To see that f is continuous, pick an e > 0.
Choose N so large that

00
3 ' e

4 < 4
j=N+1
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(we can of course do this because the series E (4 )-' converges).
Now fix x. Observe that since 7(, is continuous and the graph of e,
is composed of segments of slope 1 we have

(q) - -0(t)I <- I s - ti

for all s and t. Moreover I ?y (s) - ?/,(t)I < 1 for all s, t.

For j = 1, 2, ... , N pick 8j > 0 so that when It - xI < bj then

IV) (4't) (4'x) I < 8

Let 6 be the minimum of 6 1....6N.

Now if It - xf < 6 then

If (t) - f(x)I =
N (3)i

(0(4it) -,0(4'x))
jr-

3 j

+ (4 I (,0(4it) - G(4'x))
j=N+1

(4), I ('(4''t) I

00
3

+ (4)' Ii&(4't)
j =N+1

N (3)3 E

j=1 j=N+l

Here we have used the choice of b to estimate the summands in
the first sum. The first sum is thus less than e/2 (just notice that
E'*, (3/4)j < 4). The second sum is less than e/2 by the choice
of N. Altogether then

af(t) - f(x)l < E

whenever It - xI < 6. Therefore f is continuous, indeed uniformly
so.

Step II: f is nowhere differentiable. Fix x. For t = 1, 2,... define
ti = x ± 4-1/2. We will say whether the sign is plus or minus in
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a moment (this will depend on the position of x relative to the
integers). Then

f(tt) - f(x)
=tt -x

1

-
(3)2

(0(4itt) -0(4'x))

00

+ 1

(3)2
(0(4'tt) - 0(4jx))

(*)

Notice that, when j > e+ 1, then 4?tt and 4'x differ by an even
integer. Since 0 has period 2, we find that each of the summands
in the second sum is 0. Next we turn to the first sum.

We choose the sign-plus or minus-in the definition of tt so
that there is no integer lying between 4ttt and 4'x. We can do this
because the two numbers differ by 1/2. But then the £th summand
has magnitude

(3/4)' 14ttt - 4txl = 3tI tt - xi .

On the other hand, the first t - 1 summands add up to not
more than
t-1

3 t-1 31 - 1
14 I j4itt-4jxI _ F 3i 4-t/2 <

3 - 1
4-'/2 < 3t.4-t-1

f=1 ` Ill j=1

It follows that

f(tt) - f(x) 1

tt - x I Itt - x (,(4'tt) -
()i

t-1 3 i1

Ite - xl (4) (,P(4'tt) -1G(4'x))

+
()'

-,G(4tx))

71
(4) tt/i(4ttt) - ()'i)(41x)T1

1

Itt _ xl E
(3)i

(,P(4'tt) - V,(4'x))
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3t - (4-p/2) , 31.4-1-1

> 3f-i

Thus to -> x but the Newton quotients blow up. Therefore the
limit

lira f (t) - f (x)
t-.z t - x

cannot exist. The function f is not differentiable at x.

0

The proof of the last theorem was long, but the idea is simple: the
function f is built by piling oscillations on top of oscillations. When the
Ith oscillation is added, it is made very small in size so that it does not
cancel the previous oscillations. But it is made very steep so that it will
cause the derivative to become large.

The practical meaning of Weierstrass's example is that we should
realize that differentiability is a very strong and special property of func-
tions. Most continuous functions are not differentiable at any point.
Theorem 14.3 will make this assertion precise. When we are proving
theorems about continuous functions, we should not think of them in
terms of properties of differentiable functions.

Next we turn to the Chain Rule.

Theorem 7.3
Let g be a differentiable function on an open interval I and let f be a
differentiable function on an open interval that contains the range of g.
Then f o g is differentiable on the interval I and

(f o g)' (x) = f' (g(x)) - 9 (x)

for each :EI.

Proof: We use the notation At to stand for an increment in the variable
t. Let us use the symbol V(r) to stand for any expression which tends
to 0 as Or -# 0. Fix X E I. Set r = g(x). By hypothesis,

Pr + Qr) - f (r) = f'(r)mli o

or
)f (r + ir) - f (r)

) =
V(

f'(
or

- r
rOr

f (r + Or) = f (r) + Or f'(r) + Ar V(r). (*)
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Notice that equation (*) is valid even when Ar = 0. Since /r in equation
(*) can be any small quantity, we set

Substituting this expression into (*) and using the fact that r = g(x)
yields

f (g(x) + Ax[g'(x) + V(x)]) =

f (r) + (Ax . [9 (x) + V (x)]) - f(r) +
(Ax [9'(x) + V(x)]) - V(r)

= f (9(x)) + Ox f'(9(x)) - 9'(x) + Ox V(x). (**)

Just as we derived (*), we may also obtain

g(x + Ax) = g(x) + Ox g'(x) + Ox V(x)
= g(x) + Ax[g'(x) + V(x)] .

We may substitute this equality into the left side of (**) to obtain

f (9(x + Ax)) = f (9(x)) + Ax f'(9(x)) - 9'(x) + 4x V(x).

With some algebra this can be rewritten as

f (9(x + Ax)) - f (9(x)) - f'(9(x)) . 9'(x) = V(x).Ox

But this just says that

Um
(f ° 9)(x + Ax) - (f 0 9)(x) = f'(g(x)) - 9'(x)

AX-0 Ox

That is, (f o 9)'(x) exists and equals f'(g(x)) g'(x), as desired. 0

7.2 The Mean Value Theorem and Applications
We begin this section with some remarks about local maxima and min-
ima of functions.

Definition 7.2 Let f be a function with domain (a, b). A point
x E (a, b) is called a local maximum for f if there is an b > 0 such that
f (t) < f (x) for all t E (x - 6, x + 6). A point x E (a, b) is called a
local minimum for f if there is an b > 0 such that f (t) > f (x) for all
t E (x - b, x + b). See Figure 7.4.
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Y

local maximum

Figure 7.4

Local minima (plural of minimum) and local maxima (plural of max-
imum) are referred to collectively as local extrema.

Proposition 7.1 [Fermat]
If f is a function with domain (a, b), if f has a local extremum at x E
(a, b), and if f is differentiable at x then f'(x) = 0.

Proof: Suppose that T. is a local minimum. Then there is a 6 > 0 such
that if x - 6 < t < x then f (t) > f (x). Then

f(t) -f(x) <0.t-x -
Letting t x, it follows that f'(x) < 0. Similarly, if x < t < x + S for
suitable b then

f(t)-AX) >0t-x -
It follows that f'(x) > 0. We must conclude that f'(x) = 0.

A similar argument applies if x is a local maximum. The proof is
complete. 0

Before going on to mean value theorems, we provide a striking ap-
plication of the proposition:
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Theorem 7.4 [Darboux's Theorem]
Let f be a differentiable function on an open interval I. Pick points
8 < t in I and suppose that f(s) < p < f'(t). Then there is a point u
between s and t such that f(u) = p.

Proof: Consider the function g(x) = f (x) - px. Then g'(s) < 0 and
g'(t) > 0. Assume for simplicity that s < t. The sign of the derivative
at s guarantees that g(s) < g(s) for 9 'greater than s and near s. The
sign of the derivative at t guarantees that g(t') < g(t) fort less than
t and near t. Thus the minimum of the continuous function g on the
compact interval [s, t] must occur at some point u in the interior (8, t).
The proposition guarantees that g'(u) = 0, or f(u) = p as claimed. 0

If f were a continuous function then the theorem would just be a
special instance of the Intermediate Value Property of continuous func-
tions (see Corollary 6.3). But derivatives need not be continuous, as the
example

.f(x) _ (x2 . sin(1/x) if x# 0
0 ifx=0

illustrates. Check yourself that f'(0) exists and vanishes but f (x)
does not exist. This example illustrates the significance of the theorem.
Since the theorem says that f will always satisfy the Intermediate Value
Property (even when it is not continuous), its discontinuities cannot be
of the first kind. In other words:

Proposition 7.2
If f is a differentiable function on an open interval I then the disconti-

nuities of f are all of the second kind.

Next we turn to the simplest form of the Mean Value Theorem.

Theorem 7.5 [Rolle's Theorem]
Let f be a continuous function on the closed interval [a, b] which is
differentiable on (a, b). If f (a) = f (b) = 0 then there is a point t E (a, b)
such that f' (t) = 0. See Figure 7.5.

Proof. If f is a constant function then any point in the interval will
do. So assume that f is nonconstant.

Theorem 6.5 guarantees that f will have both a maximum and a
minimum in [a, b]. If one of these occurs in (a, b) then Proposition 7.1
guarantees that f will vanish at that point and we are done. If both
occur at the endpoints then all the values of f lie between 0 and 0. In
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((, f(l))

Figure 7.5

other words f is constant, contradicting our assumption. 0

Of course the point l; in Rolle's theorem need not be unique. If
AX) = x3 - x2 - 2x on the interval [-1, 2] then f (a) = f (b) = 0 and f'
vanishes at two points of the interval (-1, 2). Refer to Figure 7.6.

If you rotate the graph of a function satisfying the hypotheses of
Rolle's theorem, the result suggests that for any continuous function f
on an interval [a, b], differentiable on (a, b), we should be able to relate
the slope of the chord connecting (a, f (a)) and (b, f (b)) with the value
of f' at some interior point. That is the content of the standard Mean
Value Theorem:

Theorem 7.6 [The Mean Value Theorem]
Let f be a continuous function on the closed interval [a, b] that is differ-
entiable on (a, b). There exists a point E (a. b) such that

f(b) - f(a) =
b-a

See Figure 7.7.

Proof: Our scheme is to implement the remarks preceding the theorem:
we "rotate" the picture to reduce to the case of Rolle's theorem. More
precisely, define

9(x) = f (x) - [1(a) + f (bb
- a(a) . (x - a)] if x. E [a, b] .



7.2 The Mean Value Theorem and Applications 193

Figure 7.6

h
X

Figure 7.7
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By direct verification, g is continuous on [a, b] and differentiable an (a, b)
(after all, g is obtained from f by elementary arithmetic operations).
Also g(a) = g(b) = 0. Thus we may apply Rolle's theorem to g and we
find that there is a E (a, b) such that g'(l;) = 0. Remembering that x
is the variable, we differentiate the formula for g to find that

0 = g'W _
[f'(x)_ f(b) - f(a)ll

b-a J 2_E

f (bb
- a(a) ]

As a result,

f(bb

-
a(a)

Corollary 7.1
If f is a differentiable function on the open interval I and if f'(x) = 0

for all x E I then f is a constant function.

Proof: If s and t are any two elements of I then the theorem tells us
that

f(8) - f(t) = PO - (s - t)
for some between s and t. But, by hypothesis,

f f (t). But since s and t were chosen arbitrarily we must
conclude that f is constant. 0

Corollary 7.2
If f is differentiable on an open interval I and f'(r) > 0 for all x E I

then f is monotone increasing on I; that is, ifs < t are elements of I
then f (s) < f (t).

If f is differentiable on an open interval I and f'(x) < 0 for all x E I
then f is monotone decreasing on I; that is, is s < t are elements of I
then f (s) > f (t).

Proof: Similar to the preceding corollary. 0

Example 7.2
Let us verify that if f is a differentiable function on R and if
If'(x)l < 1 for all x then If (s) - f (t)I < Is - tI for all real s and
t.



7.2 The Mean Value Theorem and Applications 195

In fact, for s y6 t there is a £ between s and t such that

f(s) - f(t)
s - t

But f'O < 1 by hypothesis hence

f(s) - f (t) <1
s-t -

or

Example 7.3

Let us verify that

If(s) - f(t)I 5 Is - tI. 0

lim ( x+5-/) =0.

Here the limit operation means that for any e > 0 there is an
N > 0 such that x > N implies that the expression in paren-
theses has absolute value less than e.

Define f (x) = f for x > 0. Then the expression in paren-
theses is just f (x + 5) - f (x). By the Mean Value Theorem this
equals

f' (O 5
for some x < < x + 5. But this last expression is

1 -12.5.

By the bounds on , this is

Clearly, as x +oc, this expression tends to zero. 0

A powerful tool in analysis is a generalization of the usual Mean
Value Theorem that is due to A. L. Cauchy (1789-1857):

Theorem 7.7 [Cauchy's Mean Value Theorem]
Let f and g be continuous functions on the interval [a, b] which are both
differentiable on the interval (a, b). Then there is a point t E (a, b) such
that

f (b) - f (a) - f'(t)
g(b) - g(a) g'(t)
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Proof: Apply the usual glean Value Theorem to the function

h(x) = g(x) . {f(b) - f(a)} - f(x) - {g(b) - g(a)} .

Clearly the usual Mean Value Theorem (Theorem 7.6) is obtained
from Cauchy's by taking g(x) to be the function x. We conclude this
section by illustrating a typical application of the result.

Example 7.4

Let f be a differentiable function on an interval I such that f'
is differentiable at a point x E I. Then

lim
2(f (x + h) + f (x - h) - 2f (x))

(f')'(x) f"(x) .h0+

To see this, fix x and define .F(h) = f (x + h) + f (x - h) - 2f (x)
and G(h) = P. Then

2(f(x + h) + f(x - h) -2f(x)) _ F(h) -.F(0)
h2 G(h) - 9(0)

According to Cauchy's Mean Value Theorem, there is a be-
tween 0 and h such that the last line equals

Writing this expression out gives

f'(x+0 -f'(x-0 1 f'(x+f)-f'(x)
2C 2

1 f'(x-.)-f'(x)
+ 2 -

and the last line tends, by the definition of the derivative, to the
quantity (f')'(x).

It is a fact that the standard proof of l'Hopital's Rule (Guillaume
Francsois Antoine de l'Hopital, Marquis de St.-Mesme, 1661-1704) is ob-
tained by way of Cauchy's Mean Value Theorem. This line of reasoning
is explored in the next section.
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7.3 More on the Theory of Differentiation
l'Hopital's Rule (actually due to his teacher J. Bernoulli (1667-1748))
is a useful device for calculating limits, and a nice application of the
Cauchy Mean Value Theorem. Here we present a special case of the
theorem.

Theorem 7.8
Suppose that f and g are differentiable functions on an open interval I
and that p E I. If limx-p f (x) = limx.p g(x) = 0 and if

limf,,(x) (*)x-.p g/(x)

exists and equals a real number a then

lim f(x) _
X-P g(x) - Q.

Proof: Fix a real number a > f. By (*) there is a number q > p such
that if p < x < q then

PX) <g'(x) a.

But now ifp<s<t<gthen

f(t) - f(s) f'(x)
9(t) - g(s) 9'(x)

for some s < x < t (by Cauchy's Mean Value Theorem). It follows then
from (**) that

f(t) - f(s)
g(t) - 9(s)

< a .

Now let s -* p and invoke the hypothesis about the zero limit of f and
g at p to conclude that

f t) <a
g(t) -

when p < t < q. Since a is an arbitrary number to the right of f we
conclude that

limsupffW <
t-.p+ 9(t)

Similar arguments show that

inf

g(t)

> Q;
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lim sup ff (t) < E ;
t-.p- g(t)

lim inf f M > t.
t-.p- g(t)

We conclude that the desired limit exists and equals 2.

Example 7.5

Let
f (x) = Iln IxI Ixs

We wish to determine limx-o f (x). To do so, we define

F(x) = In f (x) = xz lnl In Ixl I = In II
In

jxl
X2

Notice that both the numerator and the denominator tend to
too as x --+ 0. So the hypotheses of 1'Hopital's rule are satisfied
and the limit is

In IIn ixiI
=

1/[x1n[x[] _ -xz
lim lim lim = 0 .
x-.o 1/xz x-a -2/x3 x-.o 2 In lxI

Since limx.o F(x) = 0 we may conclude that the original
limit limx_o f (x) = 1.

Proposition 7.3
Let f be an invertible function on an interval (a, b) with nonzero deriva-
tive at a point x E (a, b). Let X = f (x). Then (f -')'(X) exists and
equals 1/f'(x).

Proof: Observe that, for T # X,

T-X f(t)-f x '

t-x
(*)

where T = f(t). Since f'(x) # 0, the difference quotients for f in the
denominator are bounded from zero hence the limit of the formula in (*)
exists. This proves that f -1 is differentiable at X and that the deriva-
tive equals l/ f'(x).

f-1(T) - f-1(x) 1
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Example 7.6

We know that the function f (x) = xk, k a positive integer, is
one-to-one and differentiable on the interval (0, 1). Moreover the
derivative k xk-1 never vanishes on that interval. Therefore the
proposition applies and we find for X E (0, 1) = f ((0,1)) that

IX\ = T(x)
=

f,(XV/k)

1 1 X_1
k X1-1/k - k

In other words,

i XI/k l' = 1 X*-1 .
k

We conclude this section by saying a few words about higher deriva-
tives. If f is a differentiable function on an open interval I then we
may ask whether the function f is differentiable. If it is, we denote its
derivative by

f" or f(2) or
2
f or d2 ,

and call it the second derivative of f. Likewise the derivative of the
(k -1)th derivative, if it exists, is called the kth derivative and is denoted

f or f or dxk

Observe that we cannot even consider whether f (k) exists at a point
unless f (k-1) exists in a neighborhood of that point.

If f is k times differentiable on an open interval I and if each of
the d e r i v a t i v e s f (l), f(2), ... , f(k) is continuous on I then we say that
the function f is k times continuously differentiable on I. Obviously
there is some redundancy in this definition since the continuity of f(J-1)
follows from the existence of fU). Thus only the continuity of the last
derivative f(k) need be checked. Continuously differentiable functions
are useful tools in analysis. We denote the class of k times continuously
differentiable functions on I by Ck(I).

For k = 1, 2.... the function

Jxk+1 ifx>0
fk(x) = 1 -xk+1 ifx < 0

will be k times continuously differentiable on R but will fail to be k + 1
times differentiable at x = 0. More dramatically, an analysis similar
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to the one we used on the Weierstrass nowhere differentiable function
shows that the function

00 i
gk(x) = E 43+ik sin(43x)

j=1

is k times continuously differentiable on R but will not be k + 1 times
differentiable at any point (this function, with k = 0, was Weierstrass's
original example).

A more refined notion of smoothness/continuity of functions is that
of Holder continuity or Lipschitz continuity (see Section 6.3). If f is a
function on an open interval I and if 0 < a < 1 then we say that f
satisfies a Lipschitz condition of order a on I if there is a constant M
such that for all s, t E I we have

If (s) - f(t)I < M M. Is - tIQ
.

Such a function is said to be of class Lip. (I). Clearly a function of
class LipQ is uniformly continuous on I. For if e > 0 then we may take
6 = (e/M)'1° : then for Is - tI < a we have

If(s)-f(t)I -tIQ

Interestingly, when a > 1 the class LipQ contains only constant

functions. For in this instance the inequality

If(8) -f(t)1:5 M Is - tI°

leads to
f(3) - f(t) I < NI Is - tIa-1s-t

Because a - I > 0, letting s -+ t yields that f'(t) exists for every t E I
and equals 0. It follows from Corollary 7.1 of the last section that f is
constant on I.

Instead of trying to extend the definition of LipQ (I) to a > 1 it
is customary to define classes of functions Ck, for k = 0, 1.... and
0 < a < 1, by the condition that f be of class Ck on I and that f (k) be
an element of Lip.(1). We leave it as an exercise for you to verify that
Ck'° C C1,13 if either k > f or both k = e and a > (3.

In more advanced studies in analysis, it is appropriate to replace
Lip1 (I), and more generally Ck,1, with another space (invented by An-
toni Zygmund, 1900-1992) defined in a more subtle fashion using second
differences as in Example 7.4. These matters exceed the scope of this
book, but we shall make a few remarks about them in the exercises.
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Exercises
1. Prove part (a) of Theorem 7.1.

2. If f is a C2 function on R and if i f"(x)i < C for all x then prove
that

f(x + h) + f(x - h) - 2f(x)
I

<C.
h2

* 3. Give an example of a function f for which the limit in Example
7.4 exists at some x but for which f is not twice differentiable at
X.

4. For which positive integers k is it true that if fk = f f . . . f is
differentiable at x then f is differentiable at x?

* 5. In which class Ck," is the function ixi on the interval [-1/2,1/2)?
How about the function x/ In ixi?

* 6. Give an example of a function on R such that

If(x + h) + f(x - h) - 2f(x) < C
h

for all x and all h # 0 but f is not in Lip1(R). (Hint: See Exercise
5.)

7. Fix a positive integer k. Give example of two functions f and g
neither of which is in Ck but such that f g E Ck.

8. Fix a positive integer P and define f (x) = ixie. In which class Ck
does f lie? In which class Ck,0 does it lie?

9. Let f be a function that has domain an interval I and takes values
in the complex numbers. Then we may write f (x) = u(x) + iv(x)
with u and v each being real-valued functions. We say that f is
differentiable at a point x E I if both u and v are. Formulate an
alternative definition of differentiability of f at a point x which
makes no reference to u and v (but instead defines the deriva-
tive directly in terms of f) and prove that your new definition is
equivalent to the definition in terms of u and v.

10. Refer to Exercise 9 for terminology. Verify the properties of the
derivative presented in Theorem 7.1 in the new context of complex-
valued functions.

11. Let f be a function that is continuous on [0, oo) and differentiable
on (0, oo). If f (0) = 0 and i f'(x)i < i f (x)i for all x > 0 then prove
that f (x) = 0 for all x. [This result is often called Gronwall's
inequality.]
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12. Let E C R be a closed set. Fix a nonnegative integer k. Show that
there is a function f in Ck(R) such that E = {x : f (x) = 0}.

* 13. Prove that the nowhere differentiable function constructed in The-
orem 7.2 is in Lip,, for all a < 1.

14. Let f be a continuous function on [a, b] that is differentiable on
(a, b). Assume that f (a) = m and that I f' (x) I < K for all x E
(a, b). What bound can you then put on the magnitude of f (b)?

15. Let f be a differentiable function on an open interval I and assume
that f has no local minima nor local maxima on I. Prove that f
is either monotone increasing or monotone decreasing on I.

16. Let f be a differentiable function on an open interval I. Prove
that f is continuous if and only if the inverse image under f of
any point is a closed set.

17. Let f (x) equal 0 if x is irrational; let f (x) equal 1/q if x is a
rational number that can be expressed in lowest terms as p/q. Is
f differentiable at any x?

18. In the text we give sufficient conditions for the inclusion Ck," C
C1-3. Show that the inclusion is strict if either k > e or k = f and
a>/3.

19. If 0 < a < 1 then prove that there is a constant C" > 0 such that
for 0 < x < 1/2 it holds that

I lnxI < Cp x-".

Prove that the constant cannot be taken to be independent of a.

20. If a function f is twice differentiable on (0, oc) and f"(x) > c > 0
for all x then prove that f is not bounded from above.

21. If f is differentiable on an interval I and f'(x) > 0 for all x E I
then does it follow that (f2)' > 0 for all x E I? What additional
hypothesis on f will make the conclusion true?

22. Answer Exercise 21 with the exponent 2 replaced by any positive
integer exponent.

23. Suppose that f is a differentiable function on an interval I and that
f'(x) is never zero. Prove that f is invertible. Then prove that
f-1 is differentiable. Finally, use the Chain Rule on the identity
f (f -I) = x to derive a formula for (f-')'.
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24. Assume that f is a continuous function on (-1,1) and that f is
differentiable on (-1, 0) U (0, 1). If the limit lim=o f(x) exists
then is f differentiable at x = 0?

25. Formulate notions of "left differentiable" and "right differentiable"
for functions defined on suitable half-open intervals. Also formu-
late definitions of "left continuous" and "right continuous." If you
have done things correctly, then you should be able to prove that
a left differentiable (vis. right differentiable) function is left con-
tinuous (vis. right continuous).





Chapter 8

The Integral

8.1 Partitions and The Concept of Integral
We learn in calculus that it is often useful to think of an integral as rep-
resentng area. However, this is but one of many important applications
of integration theory. The integral is a generalization of the summation
process. That is the point of view that we shall take in the present
chapter.

Definition 8.1 Let [a, b] be a closed interval in R. A finite, ordered
set of points P = {xo, xl, x2, ..., xk_1i xk} such that

a=xo <x1 <x2 <... <xk_1 <xk =b

is called a partition of [a, b]. Refer to Figure 8.1.
If P is a partition of [a, b], then we let II denote the interval [x; _1, xj],

j = 1, 2, ..., k. The symbol Aj denotes the length of Ij. The mesh of P,
denoted by rn(P), is defined to be maxi 3.

The points of a partition need not be equally spaced, nor must they be
distinct from each other.

Example 8.1

The set P = {0,1,1, 9/8,2,5,21/4,23/4,61 is a partition of the
interval [0, 6] with mesh 3 (because 15 = [2, 5], with length 3, is
the longest interval in the partition). See Figure 8.2.

Xo X1 XZ X3 X4

Figure 8.1

Xk

205
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9/8 21/4 6

0 1 2 5 23/4

Figure 8.2

Definition 8.2 Let [a, b] be an interval and let f be a function with
domain [a, b]. If P = {x0, x1, x2, ... , xk_1, xk } is a partition of [a, b] and
if, for each j, sj is an element of Ij then the corresponding Riemann
sum is defined to be

k

R(f, P) = E f (si )Ai
j_1

Example 8.2

Let f (x) = x2 - x and [a, b] = [1, 41. Define the partition P =
11, 3/2,2,7/3,41 of this interval. Then a Riemann sum for this
f and P is

R(f, P) = (12 - 1) . 2 + ((7/4)2 - (7/4))-
1

2

10103

864

0

Notice that we have complete latitude in choosing each point s,, from
the corresponding interval II. While at first confusing, we will find this
freedom to be a powerful tool when proving results about the integral.

The first main step in the theory of the Riemann integral is to
determine a method for "calculating the limit of the Riemann sums" of
a function as the mesh of partitions tends to zero. There are in fact
several methods for doing this. We have chosen the simplest one.

Definition 8.3 Let [a, b] be an interval and f a function with domain
[a, b]. We say that the Riemann sums of f tend to a limit t as m(P)
tends to 0 if, for any e > 0, there is a 6 > 0 such that, if P is any
partition of [a, b] with m(P) < 6, then ]R(f, P) - II < e for every choice
of s, E I2 .

It will tum out to be critical for the success of this definition that we
require that every partition of mesh smaller than 6 satisfy the conclusion
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of the definition. The theory does not work effectively if for every e > 0
there is a d > 0 and some partition P of mesh less than 8 which satisfies
the conclusion of the definition.

Definition 8.4 A function f on a closed interval [a, b] is said to be
Riemann integrable on [a, b] if the Riemann sums of R(f, P) tend to a
finite limit as m(P) tends to zero.

The value of the limit, when it exists, is called the Riemann integral
of f over [a, b] and is denoted by

ff(x)dx.

REMARK 8.1 We mention now a useful fact that will be formalized
in later sections. Suppose that f is Riemann integrable on [a, b] with the
value of the integral being t. Let e > 0. Then, as stated in the definition
(with e/2 replacing e), there is a b > 0 such that if Q is a partition of
[a, b] of mesh smaller than b then IR(f, Q) - eI < e/2. It follows that, if
P and P' are partitions of [a, b] of mesh smaller than 5, then

R(f, P) - RU, P')I <_ I R(f, P) - PI + l1- R(f, P')I < 2 + 2 = e .

Note, however, that we may choose P' to equal the partition P. Also
we may for each j choose the points ss, where f is evaluated for the
Riemann sum over P, to be a point where f very nearly assumes its
supremum on I,. Likewise we may for each j choose the points s;,
where f is evaluated for the Riemann sum over P', to be a point where
f very nearly assumes its infimum on I. It easily follows that when the
mesh of P is less than b then

Supf -inffJAj :e. (*)

This consequence of integrability will prove useful to us in some of the
discussions in this and the next section. In the exercises we shall consider
in detail the assertion that integrability implies (*) and the converse as
well. I

Definition 8.5 If P, P' are partitions of [a, b] then their common
refinement is the union of all the points of P and P. See Figure 8.3.

We record now a technical lemma that will be used in several of the
proofs that follow:
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a partition P b

a partition P ' b

Common refinement of P and'P
1 I 1 I I u 1 1

a b
Figure 8.3

Lemma 8.1
Let f be a function with domain the closed interval [a, b]. The Riemann

integral
b

f (x) dx
a

exists if and only if, for every f > 0, there is a b > 0 such that. if P
and P' are partitions of [a, b] with ;n(P) < 8 and in(P') < S, then their
common refinement Q has the property that

17W, P) - R(f, Q)I < E

and (*)

IR(f,P')-R(f,Q)I <E.

Proof: If f is Riemann integrable then the assertion of the lemma
follows immediately from the definition of the integral.

For the converse note that (*) certainly implies that, if c > 0, then
there is a 8 > 0 such that, if P and P' are partitions of [a, b] with
m(P) < b and m.(P') < b, then

IR(f,P) - R(f,P')I < E (**)

(just use the triangle inequality).
Now for each Ej = 2-j, j = 1, 2,... we can choose a 8j > 0 as in

(**). Let Sj be the closure of the set

{R(f, P) : m(P) < Sj } .
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By the choice of 5j, the set Si is contained in a closed interval of length
not greater than 2e,.

On the one hand,

n si

must be nonempty since it is the decreasing intersection of compact sets.
On the other hand, the length estimate implies that the intersection must
be contained in a closed interval of length 0-that is, the intersection is
a point. That point is then the limit of the Riemann sums, that is, the
value of the Riemann integral.

The most important, and perhaps the simplest, fact about the Rle-
mann integral is that a large class of familiar functions is Riemann in-
tegrable:

Theorem 8.1
Let f be a continuous function on a nontrivial closed, bounded interval
[a, b]. Then f is Riemann integrable on [a, b].

Proof: We use the lemma. Given e > 0, choose (by the uniform conti-
nuity of f on I-Theorem 6.6) a 6 > 0 such that, whenever Is - tI < 6
then

If (s) - f (t)I < b
e a (*)

Let P and P' be any two partitions of [a, b] of mesh smaller than 6. Let
Q be the common refinement of P and P.

Now we let II denote the intervals arising in the partition P (and
having length _A,) and Ie the intervals arising in the partition Q (and
having length De). Since the partition Q contains every point of P, plus
some additional points as well, every le is contained in some Ij. Fix j
and consider the expression

f(ss)As - f(te)At
ie 11

We write

Aj _ > e .

Iech
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This equality enables us to rearrange (**) as

f(Si) . E De - Y, f(te)De
lick I(Ch

[f(Si) - f(tt)]Dt
I,Ch

< [f (s3) - f(te)[De
IeC Ij

But each of the points tt is in the interval Ij , as is sj. So they differ by
less than b. Therefore, by (*), the last expression is less than

bEa&I=b(a Eat
feels IeCh

Now we conclude the argument by writing

!R(f, P) - R(f, Q) I = f(4,)Aj - f(tt),&e
j e

< f(s.i)Dj - > f(tt)Ot

a
/j

ba
(b - a)

b - a
= E.

The estimate for I R(f, P') - R(f, Q)[ is identical and we omit it. The
result now follows from Lemma 8.1. 0

In the exercises we will ask you to extend the theorem to the case
of functions f on [a, b] that are bounded and have finitely many, or even
countably many, discontinuities.
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We conclude this section by noting an important fact about R.iemann
integrable functions. A Riemann integrable function on an interval [a, b]
must be bounded If it were not, then one could choose the points sj in
the construction of R(f, P) so that f (sj) is arbitrarily large, and the
Riemann sums would become arbitrarily large, hence cannot converge.
You will be asked in the exercises to work out the details of this assertion.

8.2 Properties of the Riemann Integral
We begin this section with a few elementary properties of the integral
that reflect its linear nature.

Theorem 8.2
Let [a, b] be a nonempty interval, let f and g be Riemann integrable

functions on the interval, and let a be a real number. Then f f g and
a f are integrable and we have

(a) f,, f (x) ± g(x) dx = .fa f (x) dx f .fa g(x) dx;

(b)
Jaa'

a f (x) dx = a .fa f (x) dx;

Proof: For (a), let
rb

A = J
f (X)

dx
n

and
rb

B = J g(x) dx.
a

Let e > 0. Choose a 61 > 0 such that if P is a partition of [a, b] with
mesh less than b1 then

I R(f, P) - Al < 2 .

Similarly choose a &2 > 0 such that if P is a partition of [a, b] with mesh
less than SZ then

I R(f, P) - BI < 2 .

Let b = min{bl, 62}. If P' is any partition of [a, b] with m(P) < S then

IR(f ±g,P') - (A±B)I = IR(f,P')±R(g,P') -(A±B)I
5 IR(f, P') - Al + I R(g, P') - BI

E E
+

= E.
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This means that the integral of f ± g exists and equals A ± B, as we
were required to prove.

The proof of (b) follows similar lines but is much easier and we leave
it as an exercise for you. D

Theorem 8.3
If c is a point of the interval [a, b] and if f is Riemann integrable on both
[a, c] and [c, b] then f is integrable on [a, b] and fa f(x) dx+ fe f(x) dx =

fa f (x) dx.

Proof: Let us write

and

A=Jcf(x)dx
a

rb
B=J f(x)dx.

Now pick e > 0. There is a S1 > 0 such that if P is a partition of [a, c]
with mesh less than b1 then

I R(f, P) - Al < 3

Similarly, choose 62 > 0 such that if P' is a partition of [c, b] with mesh
less than b2 then

I R(f, P') - BI < 3 .

Let M be an upper bound for If I (recall, from the remark at the end of
Section 1, that a Riemann integrable function must be bounded). Set
6 = min{b1, b2, a/(6M)}. Now let V = {v1, ..., vk} be any partition of
[a, b] with mesh less than d. There is a last point v,a which is in [a, c] and a
first point in [c, b]. Observe that P = {vo,... , v,,, c} is a partition of
[a, Cl with mesh smaller than 61 and P' = {c, t,,,+ 1, . . . , vk} is a partition
of [c, b] with mesh smaller than b2. Let us rename the elements of P as
(p0,.. . , pn+1 } and the elements of P as {po, 'pk-n+1 }. Notice that
Pn+1 = PO = c. For each j let sj be a point chosen in the interval
I; = [vj _1, vvJ from the partition V. Then we have

R(f,V) - [A + B]r
f(s7)O1 - A)Al + f(sn+1)On+1 + ( f (s')O' BI1 ?_1

\j_n+2
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n

= I (f(8)i+f(c).(c_vfl)_A)
j=l

+ (1(c) (vn- c) + >2 f (s)A- B)
j=n+2

+ (f(s+) - AO) (C - vn) + (f(8n+1) - AO)

j=1

+ (f(c) ' (vn+1 - C) + >2 f (sj )Aj - B
j=n+2

+ (f (sn+l) - AO) ' (vn+1 - vn)

= frz(fP)-AI+IR(f,P')-BI

+ (f (sn+l) - f (C)) ' (vn+1 - vn)

<

(vn+l - c) I

by the choice of b.
This shows that f is integrable on the entire interval [a, b] and the

value of the integral is

b

A + B =
ac

f (x) dx +
`

f (x) dx. 0
J ac

REMARK 8.2 If we adopt the convention that

f(x)dx=-J f(x)dxf b
b a

(which is consistent with the way that the integral was defined in the
first place), then Theorem 8.3 is true even when c is not an element of
[a, b]. For instance, suppose that c < a < b. Then, by Theorem 8.3,

ja f(x)dx+ f bf(x)dx=Jbf(x)dx.
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But this may be rearranged to read

rjbf(x)dx=-J gf(x)dx+ (bf(x)dx=jcf(x)dx+ fbf(x)dx.

I

One of the basic tools of analysis is to perform estimates. Thus
we require certain fundamental inequalities about integrals. These are
recorded in the next theorem.

Theorem 8.4
Let f and g be integrable functions on a nonempty interval [a, b]. Then

(1) I

Ja
bf(x)dxJab If(x)I dxi

b

(ii) If f (x) < g(x) for all x E [a, b] then J f (x) dx < J
b

g(x) dx.
q

Proof: If P is any partition of [a, b] then

I1(f,P)I <_ R.(IfI,P)

The first assertion follows.
Next, for part (ii),

7W, P) 5 7Z(g, P)

This inequality implies the second assertion.

Another fundamental operation in the theory of the integral is "change
of variable" (sometimes called the "u-substitution" in calculus books).
We next turn to a careful formulation and proof of this operation. First
we need a lemma:

Lemma 8.2
If f is a Riemann integrable function on [a, b] and if 0 is a continuous

function on a compact interval that contains the range off then 0 o f
is Riemann integrable.

Proof: Let E > 0. Since 0 is a continuous function on a compact set, it
is uniformly continuous (Theorem 6.6). Let b > 0 be selected such that
(i) 6 < E and (ii) if Ix - yl < 6 then I0(x) - 0(y)I < c.
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Now the hypothesis that f is Riemann integrable implies that there
exists a b > 0 such that if P and P' are partitions of [a, b] and m(P), m(P) <
b then, for the common refinement Q of P and P', it holds that

(R(f, P) - R(f, Q)I < b2 and I(' P) - R(f, Q)I < b'l

Fix such a P, P' and Q. Let Jt be the intervals of Q and Ij the intervals
of P. Each Jt is contained in some Ij(t). We write

1Z(0 0 f, P) - R(0 ° f, Q) I

=IE0of(tj) -E0°f(8t)otI
j t

=IE E 00f(tj)Ot-E E 00f(st)Itlj JiClj j JJcI

= 1EE [00f(tj)- f(St)]At

I1: [o0f(tj)--0 0f(SI)JAtl
j JtCIj,tEG L

+I
1 JcSI

EB`oof(tj)-00f(St)JAtl

where we put I in G if Jt C Ijili and 0:5 \I sup,,(,) f - infIJO f// 1 < 5;

otherwise we put I into B. Notice that

E bit < 1 (sup f - inf f) At
tEB tEB ('W) Ij«) /

k /
_ (sup f - inff) Ot

j=1 J,CI, Ij Ij

k

(supf-inf f)Aj
=j

< 62

by the choice of b (and Remark 8.1). Therefore

E At < S.
LEB
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Let M be an upper bound for 141 (Theorem 6.5). Then

I> )t5 >2 (2.M 1

j .J Ch,tEB / j

<2M .

Also

1: 1: (0 o f(tj) - O o f(se)) At

j
1: 1: EAe
j JtCI,,eEG

since, for f E G, we know that If (a) - f ([3) I < b for any a, 0 E Ij itl.
However, the last line does not exceed (b - a) - E. Putting together our
estimates, we find that

I R(O o f, P) - R(q o f, Q) I < E (2M + (b - a)).

By symmetry, an analogous inequality holds for P'. By Lemma 8.1, this
is what we needed to prove. 0

An easier result is that if f is Riemann integrable on an interval [a, b]
and if p : [a, ,0] -+ [a, b] is continuous then f o p is Riemann integrable.
The proof of this assertion is assigned to you in the exercises.

Corollary 8.1
If f and g are Riemann integrable on [a, b], then so is the function f g.

Proof: By Theorem 8.2, f + g is integrable. By the lemma, (f + g)2 =
f2 + 2f g + g2 is integrable. But the lemma also implies that f2 and
g2 are integrable (here we use the function O(x) = x2). It results, by
subtraction, that 2 f g is integrable. Hence f g is integrable. 0

Theorem 8.5
Let f be an integrable function on an interval [a, b] of positive length. Let

be a continuously differentiable function from another interval [a, a]
of positive length into [a, b]. Assume that V) is monotone increasing,
one-to-one, and onto. Then

J

s

f(x) dx = f R f(,O(x)) ip'(x) dx.
a a
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Proof: Since f is integrable, its absolute value is bounded by some
number M. Fix e > 0. Since V is continuous on the compact interval
[a, (3], it is uniformly continuous (Theorem 6.6). Hence we may choose
b > 0 so small that if Is - tI < b then IV(s) - 1/(t)I < c/ (M (,0 - a)).
If P = {po, ... , pk} is any partition of [a, b] then there is an associated
partition P of [a,31. For simplicity denote
the points of P by pj. Let us choose the partition P so fine that the
mesh of P is less than S. If tj are points of Ij = [pj-1i pj] then there are
corresponding points sj = r/i-1(tj) of Ij = [#j1, pj]. Then we have

k k

f(tj)Oj = EAtj)(;j -pj-1)
j=1 j=I

_Ef(
j=1

(sj))(0( j)--0(t'j-1)

k

_ Ef('O(sj))'(uj)(Pj -
j=1

where we have used the Mean Value Theorem in the last line to find
each uj. Our problem at this point is that 10 O and rj/ are evaluated at
different points. So we must do some estimation to correct that problem.

The last displayed line equals

kf( f (*'(uj) - //(8,))
j=1 j=1

The first sum is a Riemann sum for f (z<i(x) r//(x) and the second sum
is an error term. Since the points uj and sj are elements of the same
interval Ij of length less than b, we conclude that t b'(uj) - V(sj)I <
e/(M I/3 - aI ). Thus the error term in absolute value does not exceed

k k
,EM M-13-al Uj-pj-1) D

, j=0

This shows that every Riemann sum for f on [a, b] with sufficiently small
mesh corresponds to a Riemann sum for f (fi(x)) V (x) on [a, /31 plus
an error term of size less than e. A similar argument shows that every
Riemann sum for f (fi(x)) r// (x) on [a, p] with sufficiently small mesh
corresponds to a Riemann sum for f on [a, b] plus an error term of mag-
nitude less than e. The conclusion is then that the integral of f on [a, b]
(which exists by hypothesis) and the integral of f (rli(x)) 4li' (x) on [a, /3]
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(which exists by the corollary to the lemma) agree.

We conclude this section with the very important

Theorem 8.6 [The Fundamental Theorem of Calculus]
Let f be an integrable function on the interval [a, b]. For X E [a, b] we
define

F(x) =
J

x f (s)ds .

a

If f is continuous at x E (a, b) then

F'(x) = f(x)

Proof: Fix X E (a, b). Let E > 0. Choose, by the continuity of f at x,
a 8 > 0 such that I s - xI < is implies I f (s) - f (x) I < E. We may assume
that 8<min{x-a,b-x}. If It-xI <6 then

F(t) - F(x)
t-x -f(x) _

fa f(s)ds - fQ f(s)ds
- f(x)t - x

fi f (s)ds _ f. .f (x)ds
t-x t-x

fx (f(s) - f(x)) ds
t-x

Notice that we rewrote f (x) as the integral with respect to a dummy
variable s over an interval of length It - xj divided by (t - x). Assume
for the moment that t > x. Then the last line is dominated by

fz If (S) - f(x)Ids < fx e ds
t-x - t-x

= E.

A similar estimate holds when t < x (simply reverse the limits of inte-
gration).

This shows that

lim
F(t) - F(x)

t-z t - x
exists and equals f (x). Thus F'(x) exists and equals f (x).

In the exercises we shall consider how to use the theory of one-sided
limits to make the conclusion of the Fundamental Theorem true on the
entire interval [a, b]. We conclude with
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Corollary 8.2
If f is a continuous function on [a, b] and if G is any continuously

differentiable function on [a, b] whose derivative equals f on (a, b) then

b

f (x) dx = G(b) - G(a).
a

Proof: Define F as in the theorem. Since F and G have the same
derivative on (a, b), they differ by a constant (Corollary 7.1). Then

r. f (x) dx = F(b) = F(b) - F(a) = G(b) - G(a)

as desired. 0

8.3 Another Look at the Integral
For many purposes, such as integration by parts, it is natural to formu-
late the integral in a more general context than we have considered in the
first two sections. Our new formulation is called the Riemann-Stieltjes
integral and is described below.

Fix an interval [a, b] and a monotonically increasing function a on
[a, b]. If P = {po, pl, ... ,pk} is a partition of [a, b], then let & j =
a(pj) - a(pj_1). Let f be a bounded function on [a, b] and define the
upper Riemann sum of f with respect to a and the lower Riemann sum
of f with respect to a as follows:

k

U(f,1',a) =E MjOaj
j=1

and
k

C(f,P,a) = Emj0aj.
j=1

Here the notation Mj denotes the supremum of f on the interval I, =
[pj_i, pj] and mj denotes the infimum of f on Ij.

In the special case a(x) = x the R.iemann sums discussed here have
a form similar to the Riemann sums considered in the first two sections.
Moreover,

£(f, P, a) <- R(f, P) <- U(f, P, a)

We define
I*(f) =infU(f,P,a)
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and

I.(f) =supL (f,P,a).
Here the supremum and infimum are taken with respect to all parti-
tions of the interval [a, b]. These are, respectively, the upper and lower
integrals of f with respect to a on [a, b].

By definition it is always true that, for any partition P,

'CU. P, a) < I«(.f) < I*(.f) <U(f,P,a).

It is natural to declare the integral to exist when the upper and lower
integrals agree:

Definition 8.6 Let a be a monotone increasing function on the
interval [a. b] and let f be a bounded function on [a, b]. We say that the
Riemann-Stzeltjes integral off with respect to a exists if

I'(f) =

When the integral exists we denote it by

fda.f
Notice that the. definition of Riemann-Stieltjes integral is different

from the definition of Riemann integral that we used in the preceding
sections. It turns out that when a(x) = x the two definitions are equiva-
lent (this assertion is explored in the exercises). In the present generality
it is easier to deal with upper and lower integrals in order to determine
the existence of integrals.

Definition 8.7 Let P and Q be partitions of the interval [a, b]. If
each point of P is also an element of Q then we call Q a refinement of
P.

Notice that the refinement Q is obtained by adding points to P.
The mesh of Q will be less than or equal to that of P. The following
lemma enables us to deal effectively with our new language:

Lemma 8.3
Let P be a partition of the interval [a, b] and f a function on [a, b]. Fix

a monotone increasing function a on [a, b]. If Q is a refinement of P
then

U(f, Q,a) <U(f,P,a)
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and

£(f, Q, a) ? £(f, P, a)

Proof: Since Q is a refinement of P it holds that any interval Ie arising
from Q is contained in some interval J1(e) arising from P. Let M1t be
the supremum of f on I, and MJ,(t) the supremum of f on the interval
Jliel. Then MI, < MJ ) . We conclude that

U(f, Q, a) = > Flit Aat <_ E MJltn Aat.
e e

We rewrite the right-hand side as

11fJ, Aat
J tSJ,

However, because a is monotone, the inner sum simply equals a(p3) -
a(pj_1) = Aa3. Thus the last expression is equal to U(f,P,a), as
desired.

A similar argument applies to the lower sums. 0

Example 8.3
Let [a, b] = [0, 10] and let ca (x) be the greatest integer function.l
That is, a(x) is the greatest integer that does not exceed x.
So, for example, a(0.5) = 0, a(2) = 2, and a(-3/2) = -2.
Certainly a is a monotone increasing function on [0, 10]. Let
f be any continuous function on [0, 10]. We shall determine
whether

10

fda

exists and, if it does, calculate its value.
Let P be a partition of [0,10]. By the lemma, it is to our ad-

vantage to assume that the mesh of P is smaller than 1. Observe
that A% equals the number of integers that lie in the interval
13-that is, either 0 or 1. Let 1., 1 I? ...I?,o be, in sequence,
the intervals from the partition which do in fact contain each
distinct integer (the first of these contains 0, the second contains
1, and so on up to 10). Then

Io Io

U(f,P,a) = >MseAa3t = EMx
1=o a=I

IIn many texts the greatest integer in x is denoted by [x]. We do not use that
notation because it could get confused with our notation for a closed interval.



222 Chapter 8: The Integral

and
10 10

G(f, P, a) = E mI,&a,. _ m7,
P=0 P.=1

because any term in these sums corresponding to an interval not
containing an integer must have A% = 0. Notice that dap = 0
since a(0) = a(p1) = 0.

Let e > 0. Since f is uniformly continuous on [0, 101, we may
choose a b> 0 such that is t j< S implies that If (s) - f (t) I <
e/20. If m(P) < 6 then it follows that If (P) - M,,, I < e/20 and
If (e) - m., I < e/20 for f = 0,1....10. Therefore

10

U(f,P,a) < (f(e) + 20
P=1

and
10

G(f,P,a) > (f (t) - 20
2=1

Rearranging the first of these inequalities leads to

to

P=1

and
to

a) > 1: f(e) -(1) 2

Thus, since 1.(f) and I' (f) are trapped between U and G, we
conclude that

IF(f) - I"(f)I < (: .

We have seen that if the partition is fine enough then the upper
and lower integrals of f with respect to a differ by at most E.
It follows that f0 0 fda exists. Moreover,

10

(f) - Y'f(e)
e=1

and
10

I=(f) -Ef(e)
t=1

We conclude that

< e

< e .

10 10

fda=Ef(e)
t=1

!]
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The example demonstrates that the language of the Riemann-Stieltjes
integral allows us to think of the integral as a generalization of the sum-
mation process. This is frequently useful, both philosophically and for
practical reasons.

The next result, sometimes called Riemann's lemma, is crucial for
proving the existence of Riemann-Stieltjes integrals.

Proposition 8.1
Let a be a monotone increasing function on [a, b] and f a bounded

function on the interval. The Riemann-Stieltjes integral of f with respect
to a exists if and only if, for every e > 0, there is a partition P such that

IU(f,P,a)- C(f,P,a)I <e. (*)

Proof: First assume that (*) holds. Fix e > 0. Since L < I* S 1* _< U,
inequality (*) implies that

II*(f)-I*(f)I <e.

But this means that fa fda exists.
Conversely, assume that the integral exists. Fix e > 0. Choose a

partition Qr such that

IU(f, Qi,a) - I*(f)I < e/2.

Likewise choose a partition Q2 such that

IG(f, Q2, a) - I*(f)I < e/2.

Since I. (f) = I * (f) it follows that

(**)IU(f, Qr, a) - .C(f, Q2, a) I < c.

Let P be the common refinement of Qr and Q2. Then we have, again
by Lemma 8.3, that

b

£(f, Q2, a) < G(f, P, a) < f fda < U(f, P, a) < U(f, Qr, a) .
n

But, by (**), the expressions on the far left and on the far right of these
inequalities differ by less than e. Thus P satifies the condition M.

We note in passing that the basic properties of the Riemann integral
noted in Section 2 (Theorems 8.2 and 8.3) hold without change for the
Riemann-Stieltjes integral. The proofs are left as exercises for you (use
Riemann's lemma!).
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8.4 Advanced Results on Integration Theory
We now turn to establishing the existence of certain Rietnann-Stieltjes
integrals.

Theorem 8.7
Let f be continuous on [a, b] and assume that a is monotonically in-

creasing. Then
fb

fda

exists.

Proof: We may assume that a is nonconstant otherwise there is nothing
to prove.

Pick e > 0. By the uniform continuity of f we may choose a b > 0
such that if Is - tj < b then If(s) - f (t)I < c/(a(b) - a(a)). Let P be
any partition of [a, b] that has mesh smaller than 6. Then

IU(f, P, a) - G(.f, P, a) I =

JMLMj-nnj I Ac,

< a(b) - a(a)
Dad

e
Dad

a(b) - a(a)

= e.

Here, of course, we have used the monotonicity of a to observe that the
last sum collapses to a(b) - a(a). By Riemann's lemma, the proof is
complete.

Notice how simple Riemann's lemma is to use. You may find it
instructive to compare the proofs of this section with the rather difficult
proofs in Section 2. What we are learning is that a good definition
(and accompanying lemma(s)) can, in the end, make everything much
simpler. Now we establish a companion result to the first one:

Theorem 8.8
If a is a monotone increasing and continuous function on the interval
[a, b] and if f is monotonic on [a, b] then f' fda exists.
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Proof: We may assume that a(b) > a(a) and that f is monotone
increasing. Let L = a(b) - a(a) and M = f(b) - f(a). Pick e > 0.
Choose k so that

k <E.

Let po = a and choose pi to be the first point to the right of po such that
a(pi) - a(po) = L/k (this is possible, by the Intermediate Value Theo-
rem, since a is continuous). Continuing, choose pj to be the first point to
the right of pj_1 such that a(pj) - a(pj_1) = L/k. This process will ter-
minate after k steps and we will have pk = b. Then P = {po, pl,..., pk}
is a partition of [a, b].

Next observe that, for each j, the value Mj of sup f on Ij is f(pj)
since f is monotone increasing. Similarly the value mj of inf f on 1 j is
f (p j -1). We find therefore that

k k

U(f,P,a) - L(f,P, a) = k ALfjOaj - ErnjAaj
j=1 j=1

k

k((Mj-mj)')
j=1

L k
_ E(f(xj) - f(xj-1))

j=1

k
< E.

Therefore inequality (*) of Riemann's lemma is satisfied and the integral
exists. 0

One of the useful features of Riemann-Stieltjes integration is that it
puts integration by parts into a very natural setting. We begin with a
lemma:

Lemma 8.4
Let f be continuous on an interval [a, b] and let g be monotone increasing
and continuous on that interval. If G is an antiderivative for g then

f (x)g(x) dx = l b fdG.
J.

Proof: Apply the Mean Value Theorem to the Riemann sums for the
integral on the right. 0
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Theorem 8.9 [Integration by Parts]
Suppose that both f and g are continuous, monotone increasing func-
tions on the interval [a, b]. Let F be an antiderivative for f on [a, b] and
G an antiderivative for g on [a, b]. Then we have

fa

b

FdG = [F(b) G(b) - F(a) . G(a)] - GdFb

Proof: Notice that, by the preceding lemma, both integrals exist. Set
P(x) = F(x) G(x). Then P has a continuous derivative on the interval
[a, b]. Thus the Fundamental Theorem applies and we may write

f

b

P(b) - P(a) = P'(x) dx = [F(b) G(b) - F(a) G(a)] .

Now writing out P' explicitly, using Leibnitz's Rule for the derivative of
a product, we obtain

f
b

F(x)g(x) dx = [F(b)G(b) - F(a)G(a)] - f
b

G(x) f (x) dx .

a

But the lemma allows us to rewrite this equation as

jb FdG = [F(b)G(b) - F(a)G(a)] - jb G(x)dF. 0
a

REMARK 8.3 The integration by parts formula can also be proved
by applying summation by parts to the Riemann sums for the integral

b

fdg.
a

This method is explored in the exercises.

We have already observed that the Riemann-Stieltjes integral

a

jb
fda

is linear in f ; that is,

and

j
b rb rb

(f + g)da =
J

fda +
J

gda
n a

jb
rcfda=c/

fda
n
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when both f and g are Riemann-Stieltjes integrable with respect to a
and for any constant c. We also would expect, from the very way that
the integral is constructed, that it would be linear in the a entry. But
we have not even defined the Riemann-Stieltjes integral for nonincreas-
ing a. And what of a function a that is the difference of two monotone
increasing functions? Such a function certainly need not be monotone.
Is it possible to identify which functions a can be decomposed as sums
or differences of monotonic functions? It turns out that there is a sat-
isfactory answer to these questions, and we should like to discuss these
matters briefly.

Definition 8.8 If a is a monotonically decreasing function on [a, b)
and f is a function on [a, b] then we define

fda=-J6fd(-a)
a a

when the right side exists.

The definition exploits the simple observation that if a is monotone
decreasing then -a is monotone increasing; hence the preceding theory
applies to the function -a.

Next we have

Definition 8.9 Let a be a function on [a, b] that can be expressed
as

a(x) = al(x) - a2(x),

where both al and a2 are monotone increasing. Then for any f on [a, b]
we define rb b rb

J fda = f fdal -
J

fda2,

provided that both integrals on the right exist.

Now, by the very way that we have formulated our definitions,
fa fda is linear in both the f entry and the a entry. But the definitions
are not satisfactory unless we can identify those a that can actually
occur in the last definition. This leads us to a new class of functions.

Definition 8.10 Let f be a function on the interval [a, b]. For x E
[a, b] we define

k

Vf(x) = sup E If(P,) - f(P,-l)I
j=1
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where the supremum is taken over all partitions P of the interval [a, x].
If Vf - Vf (b) < oo then the function f is said to be of bounded

variation on the interval [a, b]. In this circumstance the quantity Vf (b)
is called the total variation of f on [a, b].

A function of bounded variation has the property that its graph does
not have unbounded total oscillation.

Example 8.4

Define f (x) = sin x, with domain the interval (0,27r]. Let us
calculate Vf. Let P be a partition of [0,2ir]. Since adding
points to the partition only makes the sum

k

EIf(pi) -f(pi-i)I
j=1

larger (by the triangle inequality), we may as well suppose that
P = {po, pl, p2, .... pk} contains the points zr/2, 37r/2. Say that
pei = 7r/2 and pt,, = 3ir/2. Then

k t,

E If(pi) - f(pi-1)I = E If(pi) - f(pi-01
i=1 i_1

to

+ L If(pi) -f(pi-1)I
i=t.,+1

k

+ E If(pi) - f(pi-1)I
i=t2+1

However, f is monotone increasing on the interval [0, it/2] _
[0,pe,]. Therefore the first sum is just

e,

L f(pi) - f(pi-1) = f(pt,) - f(po) = f(ir/2) - f(0) = 1.
j=1

Similarly, f is monotone on the intervals [7r/2, 3ir/2] = [pt pe21
and [31r/2, 27r] = [pe pk]. Thus the second and third sums equal
f(pet) -f (pee) = 2 and f (pk) -f (pt,) = 1 respectively. It follows
that

Vf = Vf (2ir) = 1 + 2 + 1 = 4 .

Of course Vf (x) for any x E [0, 21r] can be computed by similar
means (see the exercises).
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In general, if f is a continuously differentiable function on
an interval [a, b] then

Vf(x) = f Jf'(t)Idt.

This assertion will be explored in the exercises.

Lemma 8.5
Let f be a function of bounded variation on the interval [a, b]. Then

the function Vf is monotone increasing on (a, b].

Proof: Let s < t be elements of [a, b]. Let P = {po, p1, ...,pk} be a
partition of [a, s]. Then P = {po, p1, ... , pk, t} is a partition of [a, t] and

k

EIf(pi)-f(pj-1)I
j=1

k

> I f(pj) - f(pj-1)I + If (t) - f(pk)I
j=1

< Vf(t).

Taking the supremum on the left over all partitions P of (a, s] yields that

Vf (s) < Vf (t) .

Lemma 8.6
Let f be a function of bounded variation on the interval [a, b]. Then

the function Vf - f is monotone increasing on the interval [a, b].

Proof: Let s < t be elements of [a, b]. Pick c > 0. By the definition of
Vf we may choose a partition P = {po, pl, ... , pk} of the interval [a, a]
such that

k

Vf(s) - E < E If(pj) - f( -1)I (*)

j=1

But then P = {po, p1, . . . , pk, t} is a partition of [a, t] and we have that

k

E If() - f(pj-1)I + If(t) - f(a)f <- Vf(t)
j=1
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Using (*), we may conclude that

k

Vf(s) - E + f(t) - f(s) < E if(pi) - f(pi-i)I + If(t) - f(s)[ <- Vf(t).
j=1

We conclude that

Vf(s) - f(s) < Vf(t) - f(t) +E.

Since the inequality holds for every E > 0, we see that the function Vf -f
is monotone increasing.

Now we may combine the last two lemmas to obtain our main result:

Proposition 8.2
If a function f is of bounded variation on [a, b], then f may be written

as the difference of two monotone increasing functions. Conversely, the
difference of two monotone increasing functions is a function of bounded
variation.

Proof: If f is of bounded variation write f = Vf - (Vf - f) - fl - f2.
By the lemmas, both fl and f2 are monotone increasing.

For the converse, assume that f = f, - f2 with fl, f2 monotone
increasing. Then it is easy to see that

Vf(b) < Ifi(b) - fi(a)I + If2(b) - f2(a)I

Thus f is of bounded variation.

Now the main point of this discussion is the following theorem:

Theorem 8.10
If f is a continuous function on [a, b] and if a is of bounded variation on
[a, b] then the integral

fb
fda

exists and is finite.
If g is of bounded variation on [a, b] and if 3 is a continuous function

of bounded variation on [a, b] then the integral

b

J
gdj3

a

exists and is finite.
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Proof: Write the function(s) of bounded variation as the difference of
monotone increasing functions. Then apply Theorems 8.7 and 8.8. 0

Exercises
1. If f is a Riemann integrable function on [a, b] then show that f

must be a bounded function.

2. Prove that if f is continuous on the interval [a, b] except at finitely
many points and is bounded then f is Riemann integrable on [a, b].

3. Do Exercise 2 with the phrase "finitely many" replaced by "count-
ably many."

4. Define the Dirichlet function to be

f (x) _ 1 if x is rational
0 if x is irrational

Prove that the Dirichlet function is not Riemann integrable on the
interval [a, b].

5. Define
g(x) = J x sin(1/x) if x 0

0 ifx=0
Is g Riemann integrable on the interval [-1, 1]?

6. Imitate the proof of the Fundamental Theorem of Calculus in Sec-
tion 2 to show that if f is continuous on [a, b] and if we define

F(x) = J z f (t) dt
a

then F'(a) exists and equals f (a) in the sense that

lim
F(t) - F(a) = f(a).

ta+ t - a
Formulate and prove an analogous statement for the derivative of
F at b.

7. Prove that if f is a continuously differentiable function on the
interval [a, b] then

b

V.f = JI f'(x)I dx.

[Hint: You will prove two inequalities. For one, use the Funda-
mental Theorem. For the other, use the Mean Value Theorem.]
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8. Provide the details of the assertion that if f is Rieinann integrable
on the interval [a, b] then for any e > 0 there is a 6 > 0 such that
if P is a partition of mesh less than 6 then

Aj<e.(supf_i1ff'\
I; Ii JJJ

[Hint: Follow the scheme presented before Remark 8.1. Given e >
0, choose 6 > 0 as in the definition of the integral. Fix a partition
P with mesh smaller than 6. Let K + 1 be the number of points in
P. Choose points tj E II so that j f (tj) - sups; f I < e/(2(K + 1));
also choose points t E II so that j f (t') - inf1, f j < e/(2(K + 1)).
By applying the definition of the integral to this choice of t3 and
t' we find that

(sup f - inf f 0j < 2e .

The result follows.]

9. Prove the converse of the statement in Exercises 8. [Hint: This
is easier than Exercise 8, for any Riemann sum over a sufficiently
fine partition P is trapped between the sum in which the infimum
is always chosen and the sum in which the suprenunn is always
chosen.]

10. Review the ideas in Exercises 8 and 9 as you verify that when
a(x) = x then the Riemann-Stieltjes integral of a function f with
respect to a on [a, b] is just the same as the Riemann integral of f
on [a, b].

11. Let f be a bounded function on an unbounded interval of the form
[A, oo). We say that f is integrable on [A, oc) if f is integrable on
every compact subinterval of [A, or,) and

B
lim f f (x) dx

A

exists and is finite.

Assume that f is Riemann integrable on [1, N] for every, N > 1 and
that f is monotone decreasing. Show that f is Riemann integrable
on [1, oo) if and only if Ej__1 f (j) is finite.

Suppose that g is nonnegative and integrable on [1, cc). If 0 <
If (x)j < g(x) for x E [1, oo) and f is integrable on compact subin-
tervals of [1, oo) then prove that f is integrable on [1, oc).
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12. Let f be a function on an interval of the form (a, b] such that f is
integrable on compact subintervals of (a, b]. If

b

1+E
lim f (x) dx

E-.o +

exists and is finite then we say that f is integrable on (a, b]. Prove
that if we restrict attention to bounded f then in fact this def-
inition gives rise to no new integrable functions. However there
are unbounded functions that can now be integrated. Give an
example.

Give an example of a function g that is integrable by the definition
in the preceding paragraph but is such that IgI is not integrable.

13. Prove that the integral

f°O sin x
dx

o x

exists.

14. State and prove the analogue of Theorem 8.4 for the Riemann-
Stieltjes integral.

15. State and prove an analogue of Lemma 8.2 for the Riemann-
Stieltjes integral.

16. Give an example to show that the composition of Riemann inte-
grable functions need not be Riemann integrable.

17. Suppose that f is a continuous, nonnegative function on the in-
terval [0, 1]. Let Iv! be the supremum of f on the interval. Prove
that

(

1 1/n

1 °OI f f(t)ndt] M.
0

18. Let f be a continuous function on the interval 10, 1] that only takes
nonnegative values there. Prove that

[L' f(t)dt]< f(t)2dt.

19. Let f (x) = sin x on the interval [0, 21r]. Calculate Vf (x) for any
x E [0, 27r] .
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20. Define a(x) by the condition that a(x) = -x + k when k < x <
k + 1. Calculate

t2da(t.) .
J 72

21. Let [x] be the greatest integer function as discussed in the text.
Define the "fractional part" function by the formula a(x) = x -
[x]. Explain why this function has the name "fractional part."
Calculate

L
5

22. Give an example of a continuous function on the interval 10, 1] that
is not of bounded variation.

23. To what extent is the following statement true? If f is Riemann
integrable on [a, b] then 1/ If is Riemann integrable on [a, b].

24. Explain how the summation by parts formula may be derived from
the integration by parts formula proved in Section 4.

25. Explain how the integration by parts formula may be derived from
the summation by parts process.

26. Let 0 be a monotone increasing function on the interval [a, b]. Set
m = /3(a) and M = /3(b). For any number A lying between m and
M set Sa = {x E [a, b] : /3(x) > A}. Prove that S,, must be an
interval. Let e(A) be the length of Sa. Then prove that

b M
/3(t)p dt = - J Ode(s)

n m
rM

0

27. Give an example of a function f such that f 2 is Riemann integrable
but f is not. What additional hypothesis on f would make the
implication true?

28. Let f be a continuously differentiable function on the interval
[0, 27r]. Further assume that f (0) = f (21r) and f'(0) = f'(21r).
For n E N define

_ rz
f (n) =

27r J
f (x) sin nx dx .

0



EXERCISES 235

Prove that
00

If(n)12
n-,

converges. [Hint: Use integration by parts to obtain a favorable
estimate on If(n)I.)

* 29. Prove that

exists.

lim f,7
l/n cos(2r) - cos rdr

n-»o r

30. If f is Riemann integrable on the interval [a, b] and if it : [a, #) -
[a, b] is continuous then prove that fop is Riemann integrable on
[a, 01.

31. Use the theory of one-sided limits to extend the Fundamental The-
orem of Calculus to the entire closed interval [a, b].





Chapter 9

Sequences and Series of
Functions

9.1 Partial Sums and Pointwise Convergence
A sequence of functions is usually written

fl(x)ef2(x),... or

We will generally assume that the functions fj all have the same domain
S.

Definition 9.1 A sequence of functions {f} j_l with domain S C K
is said to converge pointwise to a limit function f on S if for each x E S
the sequence of numbers {f j (x)} converges to f (x).

Example 9.1
Define fj(x) = xj with domain S = (x : 0 < x < 1). If
0 < x < 1 then f j (x) 0. However, f j (1) - 1. Therefore the
sequence fj converges to the function

f(x)- 10 if0<x<1
lifx=1

See Figure 9.1. 0

Here are some of the basic questions that we must ask about a
sequence of functions f j that converges to a function f on a domain S:

(1) If the functions fj are continuous then is f continuous?

(2) If the functions fj are integrable on an interval I then is f inte-
grable on I?

237
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Figure 9.1

(3) If f is integrable on I then does the sequence f1 f j (x) dx converge
to f1 f (x) dx?

(4) If the functions f j are differentiable then is f differentiable?

(5) If f is differentiable then does the sequence fi' converge to f'?

We see from Example 9.1 that the answer to the first question is
"no": Each of the fj is continuous but f certainly is not. It turns out
that, in order to obtain a favorable answer to our questions, we must
consider a stricter notion of convergence of functions. This motivates
the next definition.

Definition 9.2 Let f j be a sequence of functions on a domain S.
We say that the functions f j converge uniformly to f if, given f > 0,
there is an N > 0 such that, for any j > N and any x E S, it holds that
Ifj(x) - f(x)I < f.

Notice that the special feature of uniform convergence is that the
rate at which f j (x) converges is independent of x E S. In Example 9.1,
f j (x) is converging very rapidly to zero for x near zero but arbitrarily
slowly to zero for x near 1-see Figure 9.1. In the next example we shall
prove this assertion rigorously:
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Example 9.2
The sequence fj(x) = x3 does not converge uniformly to the
limit function f(x)= 0if0<x<

11 ifx=1
on the domain S = [0, 11. In fact it does not even do so on the
smaller domain [0,1). To see this, notice that no matter how
large j is we have, by the Mean Value Theorem, that

fi(1)-f,(1-1/(2j))= 2j'f;( )

for some between 1-1/(2j) and 1. But fi(x) = j xj-1 hence
I fj I < j and we conclude that

or

1If,(1) - f;(1 - 1/(2j))I <
2

fi(1 - 1/(2.7)) > ff(1) - 2 = 2

In conclusion, no matter how large j, there will be values of x
(namely x = 1 - 1/(2j) ) at which f,(x) is at least distance
1/2 from the limit 0. We conclude that the convergence is not
uniform. 0

Theorem 9.1
If fj are continuous functions on a set S that converge uniformly on S
to a function f then f is also continuous.

Proof: Let E > 0. Choose an integer N so large that if j > N then
I f, (x) - f (x) I < E/3 for all x E S. Fix P E S. Choose b > 0 so small
that if Ix - PI < b then I fN(x) - fN(P)I < E/3. For such x we have

If(x) - f(P)I <- If(x) - fN(x)I + IfN(x) - fN(P)I + IfN(P) - f(P)I
E E E<++

by the way that we chose N and d. But the last line sums to e, proving
that f is continuous at P. Since P E S was chosen arbitrarily, we are
done. 0
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Example 9.3

Define functions

10ifx=0
fj(x)= jif0<x<1/j

0ifl/j<x<1
Then limjf.7 (x) = 0 for all x in the interval I = [0, 1]. How-
ever

IIJ
fi(x)dx= 0 jdx=1

1. o Jo

for every j. Thus the f j converge to the integrable limit function
f (x) = 0, but their integrals do not converge to the integral of
f.

Example 9.4

Let ql, q2,. .. be an enumeration of the rationals in the interval
I = [0, 1]. Define functions

fj{x) =
f i if x E {gl,g2,...,qj}

l0 if x {gi,g2,...,q,}

Then the functions f3 converge pointwise to the Dirichlet func-
tion f which is equal to 1 on the rationals and 0 on the irra-
tionals. Each of the functions fj has integral 0 on I. But the
function f is not integrable on 1.

The last two examples show that something more than pointwise
convergence is needed in order for the integral to respect the limit pro-
cess.

Theorem 9.2
Let f3 be integrable functions on a nontrivial bounded interval [a, b] and
suppose that the functions fj converge uniformly to the limit function
f. Then f is integrable on [a, b] and

b blim Jfj(x)dx= /f(x)dx.
-7 00 a JIa

Proof: Pick c > 0. Choose N so large that if j > N then I f j (x) - f (x) I <
f-/[2(b - a)] for all x E [a, b]. Notice that, if j, k > N, then

J
b fj(x) dx -

J
b fk(x) dxl < fb Ifj(x) - fk(x)I dx. (*)

a a a



9.1 Partial Sums and Pointwise Convergence 241

But Iff(x)-fk(x)I <_ Iff(x)-f(x)I+lf(x)-fk(x)I <E/(b-a). Therefore
line (*) does not exceed

Ja

b

b
E .-a

Thus the numbers Ja f; (x) dx form a Cauchy sequence. Let the limit of
this sequence be called A. Notice that, if we let k --+ oo in the inequalityjbjb

E,

then we obtain

I r.
ff(x)dx - A< E

for all j > N. This estimate will be used below.
By hypothesis there is a 6 > 0 such that, if P = {pl,... , pk} is a

partition of [a, b] with m(P) < 6, then

R(fN, P) - J b fN (x) dx I < C.
a

But then, for such a partition, we have

l R(f, P) - Al < fr(fP) - R(fN, P) I +
I'R(fN'

P) - fb fN(x) dxI
a

+I
fb

fN(x)dx-A

We have already noted that, by the choice of N, the third term on the
right is smaller than E. The second term is smaller than e by the way
that we chose the partition P. It remains to examine the first term.
Now

I R(f, P) - R(fN, P)
k k

=
Ef(sf)Af

fN(sf)Of
=2 f=1

EIf(8f) - fN(8J)Iof

< E 2(b - a)'
f=1

2(b - a)
Lf

f=1
E

=2.
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Therefore I T..(f, P) - Al < 3F when m(P) < 6. This shows that the
function f is integrable on [a, b] and has integral with value A. 0

We have succeeded in answering questions (1) and (2) that were
raised at the beginning of the section. In the next section we will answer
questions (3), (4), (5).

9.2 More on Uniform Convergence
In general, limits do not commute. Since the integral is defined with a
limit, and since we saw in the last section that integrals do not always
respect limits of functions, we know some concrete instances of non-
commutation of limits. The fact that continuity is defined with a limit,
and that the limit of continuous functions need not be continuous, gives
even more examples of situations in which limits do not commute. Let
us now turn to a situation in which limits do commute:

Theorem 9.3
Fix a set S and a point s E S. Assume that the functions ff converge
uniformly on the domain S \ {s} to a limit function f. Suppose that
each function f3 (x) has a limit as .r -+ s. Then f itself has a limit as
x ->sand

lim f (x) = lim lirn f, (r) .X-s -00 X,5

Because of the way that f is defined, we may rewrite this conclusion as

lim lim fJ (x) = lira lim fJ (x) .
X-.8 j-OO J-+OOZ-+8

In other words, the limits limz..s and lim,_,,, commute.

Proof: Let aJ = lima. _.,S f2(x). Let E > 0. There is a number N > 0
(independent of x E S\{ s}) such that j > N implies that I ff (x)- f (x)I <
E/4. Fix j, k > N. Choose 6 > 0 such that 0 < Ix - sI < S implies both
that I f&(x) - aJI < E/4 and I fk(x) - akI < E/4. Then

1o., -akI < Ia., - fJ(x)I +If,(x) - f(x)I+If(.c) - fk(X)I+Ifk(x) -akI

The first and last expressions are less than c/4 by the choice of x. The
middle two expressions are less than c/4 by the choice of N. We conclude
that the sequence aJ is Cauchy. Let cr be the limit of that sequence.

Letting k -+ oo in the inequality

IaJ - akI < E
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that we obtained above yields

Iaj - al <

for j > N. Now, with b as above and 0 < Ix - sl < ii, we have

If W - al <- If (x) - fj(x)I + I fj(x) - ajI + Iaj - al .

By the choices we have made, the first term is less than E/4, the second
is less than f/2, and the third is less than or equal to E. Altogether, if
0 < Ix - al < 6 then If (x) - al < 2E. This is the desired conclusion.

Parallel with our notion of Cauchy sequence of numbers, we have a
concept of Cauchy sequence of functions in the uniform sense:

Definition 9.3 A sequence of functions f j on a domain S is called
a uniformly Cauchy sequence if, for each c > 0, there is an N > 0 such
that, if j, k > N, then

Ifj(x) - fk(x)I < E dx E S.

Proposition 9.1
A sequence of function fj is uniformly Cauchy on a domain S if and

only if the sequence converges uniformly to a limit function f on the
domain S.

Proof: The proof is straightforward and is assigned as an exercise.

We will use the last two results in our study of the limits of differ-
entiable functions. First we consider an example.

Example 9.5

Define the function

0 ifx<0
fj(x) = jx2 if 0 < x <_ 1/(2j)

x -1/(4j) if 1/(2j) < x < oo

We leave it as an exercise for you to check that the functions f j
converge uniformly on the entire real line to the function

f(x)10ifx<0

xifx>0
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(draw a sketch to help you see this). Notice that each of the
functions fj is continuously differentiable on the entire real line,
but f is not differentiable at 0. 0

It turns out that we must strengthen our convergence hypotheses if
we want the limit process to respect differentiation. The basic result is

Theorem 9.4
Suppose that a sequence fj of differentiable functions on an open interval
I converges pointwise to a limit function f. Suppose further that the
sequence f converges uniformly on I to a limit function g. Then the
limit function f is differentiable on I and f'(x) = g(x) for all x E I.

Proof: There is no loss of generality to assume that I is an interval of
length 1. Let e > 0. The sequence { fj} is uniformly Cauchy. Therefore
we may choose N so large that j, k > N implies that

If(x)-f'(x) <2 dxEI.
Fix a point P E I. Define

lij(x) = fj(x) - fj(P)
x-P

(*)

for x E I, x # P. It is our intention to apply Theorem 9.3 above to the
functions p j .

First notice that, for each j, we have

line pj (x) = f (P) .

Thus
lim lim pj (x) = lim f (P) = g(P).

j oc x-P j-- C.C

That calculates the limits in one order.
On the other hand,

lim pj(x) = f(x) - f(P) = 10)jx x - P
for x E I \ {P}. If we can show that this convergence is uniform then
Theorem 9.3 applies and we may conclude that

lim p(x) = lim lim pj(x) = lim f'(P) = g(P) .
x-.P 1-00 x-.P 7

But this just says that f is differentiable at P and the derivative equals
g. That is the desired result.
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To verify the uniform convergence of the µ_,, we apply the Mean
Value Theorem to the function f; - fk. For x P we have

I µj(x) - µk(x)I = Ix 1 PI . I (f, (x) - fk(x)) - (fi(P) - fk(P))I

= Ix 1
PI . Ix - PI - I(f, - fk)'()I

for some between x and P. But line (*) guarantees that the last line
does not exceed a/2. That shows that the pj converge uniformly and
concludes the proof. O

REMARK 9.1 A little additional effort shows that we need only
assume in the theorem that the functions fj converge at a single point
xo in the domain. One of the exercises asks you to prove this assertion.

Notice further that if we make the additional assumption that each
of the functions f' is continuous then the proof of the theorem becomes
much easier. For then

f; (x) =fi(xo)+1.0 fj(t)dt

by the Fundamental Theorem of Calculus. The hypothesis that the
ff converge uniformly then implies, by Theorem 9.2, that the integrals
converge to

z

g(t) dt.

The hypothesis that the functions f; converge at xo then allows us to
conclude that the sequence fl (x) converges for every x to f (x) and

z

f(x) = f(xo)+J g(t) dt.
z0

The Fundamental Theorem of Calculus then yields that f = g as de-
sired. I

9.3 Series of Functions

Definition 9.4
The formal expression

00

Ef,(x),
j=1
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where the fj are functions on a common domain S, is called a series of
functions. For N = 1, 2,3.... the expression

N

SN(X) _ E fj (x) =fl(X) + f2 (x) + ... + f v (x)
j=1

is called the N1h partial sum for the series. In case

Jim SN (x)

exists and is finite then we say that the series converges at x. Otherwise
we say that the series diverges at x.

Notice that the question of convergence of a series of functions, which
should be thought of as an addition process, reduces to a question about
the sequence of partial sums. Sometimes, as in the next example, it is
convenient to begin the series at some index other than j = 1.

Example 9.6
Consider the series

00

F,
j=o

This is the geometric series from Proposition 4.5. It converges
absolutely for jxj < 1 and diverges otherwise.

By the formula for the partial sums of a geometric series,

SN (x) =
1 - xN+1
1-x

For +xj < 1 we see that

Definition 9.5 Let

SN(x)-' 11x. 0

00

E fj (x)
j=1

be a series of functions on a domain S. If the partial sums SN (x) con-
verge uniformly on S to a limit function g(x) then we say that the series
converges uniformly on S.

Of course all of our results about uniform convergence of sequences
of functions translate, via the sequence of partial sums of a series, to
results about uniformly convergent series of functions. For example
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(a) If f3 are continuous functions on a domain S and if the
series

00

E f, (x)
j=1

converges uniformly on S to a limit function f then f is also
continous on S.
(b) If f3 are integrable functions on [a, b] and if

00

f, (x)
,=1

converges uniformly on [a, b] to a limit function f then f is
also integrable on [a, b] and

Jf(x)dx
oo b

=E Jfj(x)dx.
J=1 a

You will be asked to provide details of these assertions, as well as a state-
ment and proof of a result about derivatives of series, in the exercises.
Meanwhile we turn to an elegant test for uniform convergence that is
due to Weierstrass.

Theorem 9.5 [The Weierstrass M-Test]
00Let {f_i be functions on a common domain S. Assume that each

1f3 is bounded on S by a constant M3 and that

00

> M3 < 00 .
=1

Then the series
00

E f,
3=1

converges uniformly on the set S.

(*)

Proof: By hypothesis, the sequence TN of partial sums of the series
EOO

1
M. is Cauchy. Given e > 0 there is therefore a number K so large

that q > p > K implies that

M3=lTq-TpI <e.
,=P+1
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We may conclude that the partial sums SN of the original series E f j
satisfy, for q > p > K,

ISq(X) - Sp(x)I = fi (x)
j=p+1

Q

< Ifj(x)I << E Mi <
j=p+1 j=p+1

Thus the partial sums SN(x) of the series (*) are uniformly Cauchy. The
series (*) therefore converges uniformly.

Example 9.7
Let us consider the series

f (x) = E 2-j sin (2Jx)
j=1

The sine terms oscillate so erratically that it would be difficult
to calculate partial sums for this series. However, noting that
the jsh summand fj(x) = 2-j sin(2jx) is dominated in absolute
value by 2-j, we see that the Weierstrass M-Test applies to this
series. We conclude that the series converges uniformly on the
entire real line.

By property (a) of uniformly convergent series of continu-
ous functions that was noted above, we may conclude that the
function f defined by our series is continuous. It is also 27r-
periodic: f (x + 27r) = f (x) for every x since this assertion is
true for each summand. Since the continuous function f re-
stricted to the compact interval [0, 21r] is uniformly continuous
(Theorem 6.6), we may conclude that f is uniformly continuous
on the entire real line.

However, it turns out that f is nowhere differentiable. The
proof of this assertion follows lines similar to the treatment of
nowhere differentiable functions in Theorem 7.2. The details
will be covered in an Exercise.

9.4 The Weierstrass Approximation Theorem
The name Weierstrass has occurred frequently in this chapter. In fact
Karl Weierstrass (1815-1897) revolutionized analysis with his examples
and theorems. This section is devoted to one of his most striking results.
We introduce it with a motivating discussion.
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It is natural to wonder whether the standard functions of calculus-
sin x, cos x, and ex, for instance-are actually polynomials of some very
high degree. Since polynomials are so much easier to understand than
these transcendental functions, an affirmative answer to this question
would certainly simplify mathematics. Of course a moment's thought
shows that this wish is impossible: a polynomial of degree k has at most
k real roots. Since sine and cosine have infinitely many real roots they
cannot be polynomials. A polynomial of degree k has the property that if
it is differentiated enough times (namely k + 1 times) then the derivative
is zero. Since this is not the case for ex, we conclude that ex cannot be
a polynomial. The Exercises discuss other means for distinguishing the
familiar transcendental functions of calculus from polynomial functions.

In calculus we learned of a formal procedure, called Taylor series,
for associating polynomials with a given function f. In some instances
these polynomials form a sequence that converges back to the original
function. Of course the method of the Taylor expansion has no hope
of working unless f is infinitely differentiable. Even then, it turns out
that the Taylor series rarely converges back to the original function-
see the discussion at the end of Section 10.2. Nevertheless, Taylor's
theorem with remainder might cause us to speculate that any reason-
able function can be approximated in some fashion by polynomials. In
fact the theorem of Weierstrass gives a spectacular affirmation of this
speculation:

Theorem 9.6 [The Weierstrass Approximation Theorem]
Let f be a continuous function on an interval [a, b]. Then there is a
sequence of polynomials p,(x) with the property that the sequence pj
converges uniformly on [a, b] to f.

In a few moments we shall prove this theorem in detail. Let us first
consider some of its consequences. A restatement of the theorem would
be that, given a continuous function f on [a, b] and an e > 0, there is a
polynomial p such that

If (x) - p(x)I <,E

for every x E [a, b]. If one were programming a computer to calculate
values of a fairly wild function f, the theorem guarantees that, up to
a given degree of accuracy, one could use a polynomial instead (which
would in fact be much easier for the computer to handle). Advanced
techniques can even tell what degree of polynomial is needed to achieve
a given degree of accuracy. The proof that we shall present also suggests
how this might be done.
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Let f be the Weierstrass nowhere differentiable function. The the-
orem guarantees that, on any compact interval, f is the uniform limit
of polynomials. Thus even the uniform limit of infinitely differentiable
functions need not be differentiable-even at one point. This explains
why the hypotheses of Theorem 9.4 needed to be so stringent.

We shall break up the proof of the Weierstrass Approximation The-
orem into a sequence of lemmas.

Lemma 9.1
Let 7Pj be a sequence of continuous functions on the interval [-1, 1] with
the following properties:

(i) Vi3(x) > 0 for all x;

(ii) f " 1 Vi? (x) dx = 1 for each j;

(iii) For any S > 0 we have

r
lim J., (x) dx = 0 .

j~°O b<1 <1

If f is a continuous function on the real line which is identically zero off
the interval [0,1] then the functions fj (x) = f 11 ij (t) f (x-t) dt converge
uniformly on the interval [0.1] to f (x).

Proof: By multiplying f by a constant we may assume that sup If I = 1.
Let E > 0. Since f is uniformly continuous on the interval [0, 11 we may
choose a 5 > 0 such that if (x - t1 < S then If(x) - f (t) I < E/2. By
property (iii) above we may choose an N so large that j > N implies
that I Ja<jtj<1 1j(t)dtI < E/4. Then, for any x E [0,1], we have

If,(x) - f(x)I = jL3(t)f(x - t) dt - f(x)

f .7 (t)f (x - t) dt - J 1 03(t)f(x)di
1 1

Notice that, in the last line, we have used fact (ii) about the functions
,0j to multiply the term f (x) by I in a clever way. Now we may combine
the two integrals to find that the last line

= I f 1 (f (x - t) - f (x))ij (t) dt

< f If(x -t) - f(x)IVj(t)dt
a
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+f I f (x - t) - f (x) I Gi (t) dt
<ItI<1

=A+B.

251

To estimate term A, we recall that, for Itl < d, we have If (x-t)- f (x)I <
e/2; hence

1

A < r-6 2 ,j (t) dt < 2 f 1 't (t) dt = 2 .

For B we write

B< 2- sup
s<ItI<1

< 2-f O, (t) dt
<ItI<1

<2.4
2

where in the penultimate line we have used the choice of j. Adding
together our estimates for A and B, and noting that these estimates are
independent of the choice of x, yields the result. 0

Lemma 9.2
Define t/ii(t) = k, . (1 - t2)i, where the positive constants ki are chosen

so that f 11 vpj (t) dt = 1. Then the functions t i; satisfy the properties
(i)-(111) of the last lemma.

Proof: Of course property (ii) is true by design. Property (i) is obvious.
In order to verify property (iii), we need to estimate the size of k,,.

Notice that

f1(1-t2)idt=2 f 1(1-t2)1dt
1 0

1/v5
1-t2)'dt>2 fo (

1/f
(1-jt2)dt,

0

where we have used the binomial theorem. But this last integral is easily
evaluated and equals 4/(3v/3). We conclude that

1

f (1-t2)j dt>
1
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As a result, ki < v/.
Now, to verify property (iii) of the lemma, we notice that, for 6 > 0

fixed and 6 < Iti < 1, it holds that

I''(t)I < o2)' < V37. (1 - b2)'

and this expression tends to 0 as j -+ oo. Thus tlii -+ 0 uniformly on
{t : 6 < Iti < 1}. It follows that the Oj satisfy property (iii) of the
lemma. 0

Proof of the Weierstrass Approximation Theorem: We may as-
sume without loss of generality (just by changing coordinates) that f is
a continuous function on the interval [0, 1]. After adding a linear func-
tion (which is a polynomial) to f, we may assume that f(0) = f(1) = 0.
Thus f may be continued to be a continuous function which is identically
zero on the entire real line.

Let 7Pi be as in Lemma 9.2 and form fi as in Lemma 9.1. Then we
know that fj converge uniformly on [0, 1] to f. Finally,

fi(x)= jj(t)f(x_t)dt

fo= Vii (x - t) f (t) dt

=kj f 1(l+(x-t)2)'f(t)dt.
0

But multiplying out the expression (1 + (x - t)2)i in the integrand then
shows that fj is a polynomial of degree at most 2j in x. Thus we have
constructed a sequence of polynomials fj that converges uniformly to f
on the interval [0, 1]. 0

Exercises
1. Prove that if a series of continuous functions converges uniformly

then the sum function is also continuous.

2. Prove that if a series Ej_1 fj of integrable functions on an interval
[a, b] is uniformly convergent on [a, b] then the sum function f is
integrable and

b oo bf f(x)dx = >f fi(x)dx.
a j=1 a
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3. Formulate and prove a result about the derivative of the sum of a
convergent series of differentiable functions.

* 4. Let 0 < a < 1. Prove that the series
00

E2-9a sin (22x)
j=1

defines a function f that is nowhere differentiable. To achieve this
end, follow the scheme that was used to prove Theorem 7.3: a)
Fix x; b) For h small, choose M such that 2-M is approximately
equal to Ih]; c) Break the series up into the sum from 1 to M -1,
the single summand j = M, and the sum from j = M + 1 to oo.
The middle term has very large Newton quotient and the first and
last terms are relatively small.

5. Prove Dini's theorem: If f j are continuous functions on a compact
set K, fi(x) < f2 (x) < ... for all x E K, and the fj converge to a
continuous function f on K then in fact the fj converge uniformly
to f on K.

6. Prove Proposition 9.1. Refer to the parallel result in Chapter 3 for
some hints.

7. Prove the assertion made in Remark 9.1 that Theorem 9.4 is still
true if the functions fj are assumed to converge at just one point
(and also that the derivatives fl converge uniformly).

8. A function is called "piecewise linear" if it is (i) continuous and
(ii) its graph consists of finitely many linear segments. Prove that
a continuous function on an interval [a, b] is the uniform limit of a
sequence of piecewise linear functions.

9. If a sequence of functions f j on a domain S C ]R has the property
that f j - f uniformly on S then does it follow that (f,)2 f2
uniformly on S? What simple additional hypothesis will make your
answer affirmative?

*

10. If fj --+ f uniformly on a domain S and if fj, f never vanish on S
then does it follow that the functions 1/fj converge uniformly to
1/f on S?

11. Use the concept of boundedness of a function to show that the
functions sin x and cosx cannot be polynomials.

12. Prove that if p is any polynomial then there is an N large enough
that ex > I p(x) I for x > N. Conclude that the function ex is not
a polynomial.
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13. Find a way to prove that tanx and Inx are not polynomials.

14. Let fj be a uniformly convergent sequence of functions on a com-
mon domain S. What would be suitable conditions on a function
0 to guarantee that 0 o fj converges uniformly on S?

15. Use the Weierstrass Approximation Theorem and Mathematical
Induction to prove that if f is k times continuously differentiable
on an interval [a, b] then there is a sequence of polynomials pj with
the property that

pj -i f
uniformly on [a, b],

uniformly on [a, b],

p(k) f(k)i

uniformly on [a, b].

16. Let a < b be real numbers. Call a function of the form

f(x)
=

1 if a< x < b
10ifx<aorx>b

a characteristic function for the interval [a, b]. Then a function of
the form

k

g(x) = Eaj fi(x),
j=1

with the fj characteristic functions of intervals [aj, b?], is called
simple. Prove that any continous function on an interval [c, d] is
the uniform limit of a sequence of simple functions. (Hint: The
proof of this assertion is conceptually simple; do not imitate the
proof of the Weierstrass Approximation Theorem.)

17. Prove that the series
00 sin jE x

j=1 i
converges uniformly on compact intervals that do not contain odd
multiples of 7r/2. (Hint: Sum by parts and the result will follow.)
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18. If f is a continuous function on the interval [a, b] and if

1. f(x)p(x)dx = 0

b

for every polynomial p then prove that f must be the zero function.
(Hint: Use Weierstrass's Approximation Theorem.)

19. Prove that the sequence of functions f j (x) = sin(jx) has no sub-
sequence that converges at every x.

20. Construct a sequence of continuous functions f j (x) that has the
property that f j (q) increases monotonically to +oo for each ratio-
nal q but such that, at each irrational x, f j (x) < 1 for infinitely
many j-

21. Suppose that the sequence f j (x) on the interval [0, 1] satisfies
I f j(s) - fj(t)I < 1s - tI for all s, t E [0,1]. Further assume that the
fj converge pointwise to a limit function f on the interval [0, 11.
Prove that the sequence converges uniformly.

22. Let {f, } be a sequence of continuous functions on the real line.
Suppose that the f j converge uniformly to a function f. Prove
that

lim f, (x + 1/j) = f (X)
j-.00

uniformly on any bounded interval.

Can any of these hypotheses be weakened?

23. Prove a comparison test for uniform convergence of series: if fj,
gj are functions and 0 < fj < gj and the series E gj converges
uniformly then so also does the series El,.

24. Show by giving an example that the converse of the Weierstrass
M-Test is false.

*

25. Define a trigonometric polynomial to be a function of the form

k P

Eaj cosjx+1: bj sinjx.
j=1 j=1

Prove a version of the Weierstrass Approximation Theorem on the
interval [0, 2ir] for 21r-periodic continuous functions and with the
phrase "trigonometric polynomial" replacing "polynomial." (Hint:
Prove that

3

,1 1+11} (costt) _
f=j



256 Chapter 9: Sequences and Series of Functions

1 (sin
+t)2

j+1 sin 2t

Use these functions as the ii,s in the proof of Weierstrass's theo-
rem.)



Chapter 10

Elementary Transcendental
Functions

10.1 Power Series
A series of the form

00

Eaj(x - c)j
j=o

is called a power series expanded about the point c. Our first task is to
determine the nature of the set on which a power series converges.

Proposition 10.1
Assume that the power series

>aj(x-c)j

j=o

converges at the value x = d. Let r = Id - cj. Then the series converges
uniformly and absolutely on compact subsets of I = {x : Ix - ci < r}.

Proof: We may take the compact subset of Z to be K = [c - s, c + s]
for some number 0 < s < r. For x E K it then holds that

00 00

> laj(x - c)jI = E laj(d - c)j
id-cl

j=o j=0

In the sum on the right, the first expression in absolute values is
bounded by some constant C (by the convergence hypothesis). The
quotient in absolute values is majorized by L = s/r < 1. The series on
the right is thus dominated by

00

j=0

257
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This geometric series converges. By the Weierstrass M-Test, the
original series converges absolutely and uniformly on K.

An immediate consequence of the proposition is that the set on which
the power series

00

E aj (x - c)j
i=0

converges is an interval centered about c. We call this set the interval
of convergence. The series will converge absolutely and uniformly on
compact subsets of the interval of convergence. The radius of the interval
of convergence (called the radius of convergence) is defined to be half its
length. Whether convergence holds at the endpoints of the interval will
depend on the particular series being studied. Let us use the notation
C to denote the open interval of convergence.

It happens that if a power series converges at either of the endpoints
of its interval of convergence, then the convergence is uniform up to that
endpoint. This is a consequence of Abel's partial summation test; details
will be explored in the exercises.

On the interval of convergence C, the power series defines a function
f . Such a function is said to be real analytic. More precisely, we have

Definition 10.1 A function f, with domain an open set U C R and
range either the real or the complex numbers, is called real analytic if
for each c E U the function f may be represented by a convergent power
series on an interval of positive radius centered at c:

00

AX) _ Eai(x - c)j.
.7=0

We need to know both the algebraic and the calculus properties of
a real analytic function: is it continuous? differentiable? How does one
add/subtract/multipy/divide two such functions?

Proposition 10.2
Let

00 00

E aj(x - c)i and E b; (x - c)j
j=O j=0

be two power series with intervals of convergence C1 and C2 centered at
c. Let f, (x) be the function defined by the first series on C1 and f2(x)
the function defined by the second series on C2. Then, on their common
domain C = CI ii C1, it holds that
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(1) f(x) ±g(x) = Ejo(aj ± bj) (x - c)j;

(2) f (x) . g(x) = E =0 j+k=m(ai - bk)(x - C)m.

Proof: Let
N N

AN = E a j (x - c)? and BN = E bj (x - c)j
j=0 j=o

be, respectively, the Nth partial sums of the power series that define f
and g. If CN is the Nth partial sum of the series

00

E(aj f bj)(x - c)i
j=o

then

fix) ± g(x) = lim AN ± lim BN = lim [AN ± BN]
N-oo N-too N-oo

00

= lim CN = E(aj ± bj)(x - c)j.
N-.oo

J=O

This proves (1).
For (2), let

N 00

DN =E E (aj. bk)(x - c)m and RN =E bj(x - c)j .
m=Oj+k=m j=N+1

We have

DN = aOBN + al (x - c)BN_ 1 +... + aN (x - C)NBO
= ao(g(x) - RN) + al(x - c)(g(x) - RN-1)

+... + aN(x - C)N(g(x) - R.o)
N

= g(x) 1: aj (x - c)j
j=o

-[aORN + al (x - c)RN-1 + ... + aN (x - C)NR0) .

Clearly,
N

g(x)E aj(x -

j

converges to g(x) f (x) as N approaches oo. In order to show that DN -
g f, it will thus suffice to show that

I aORN + a, (x - c)RN-1 + ... + aN (x - C) N Ro I
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converges to 0 as N approaches oo. Fix x. Now we know that
00

E aj (x - e)j
j=o

is absolutely convergent so we may set

x
A=EIajllx - cIi.

j=0

Also bj (x - c)j is convergent. Therefore, given c > 0, we can find
No so that N > No implies IRNI < E. Thus we have

IaoRN+al(x-c)RN-1+...+aN(x-c)NRol
< I ao RN + ... + a /N - No (x - C) N- N0 RNo I

+IaN-No+1(x - c)N-No+'RNo-1 + ... + a v (x - C)h RoI

oc

< sup Rn1 E lajl lx - clj
M>No j=o

+IaN-No+1(r - c)'_N0+lRNO_l ... + aN(x - C)NRol

< EA + IaN-No+1 (x - C)N-No+'RNo-l ... + aN(x - C)NRoI.

Thus

IaoRN+al(x-c)RN-1+ +aN(x-c)NRol
N

IajIIx - cli,
j=N-NVi,+l

where M is an upper bound for I Rj(x)I. Since the series defining A
converges, we find on letting N -+ oc that

limsuplaoRN+al(x-c)RN_l+ +aN(x-c)NRol
N-.oo

Since c > 0 was arbitrary, we may conclude that

slim =0.
-oo

REMARK 10.1 Observe that the form of the product of two power
series provides some motivation for the form that the product of a nu-
merical series took in Theorem 4.9.

Next we turn to division of real analytic functions. If f and g are
real analytic functions both defined on an open interval I and if g does
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not vanish on I then we would like f 1g to be a well-defined real analytic
function (it certainly is a well-defined function) and we would like to be
able to calculate its power series expansion by formal long division. This
is what the next result tells us:

Proposition 10.3
Let f and g be real analytic functions, both of which are defined on an

open interval I. Assume that g does not vanish on I. Then the function

h(x) - f(x)
g(x)

is real analytic on I. Moreover, if I is centered at the point c and if

0"

00

AX) = > ai (x - c)i and g(x) _ E bi (x - c)i ,
.i=o i=a

then the power series expansion of h about c may be obtained by formal
long division of the latter series into the former. That is, the zeroeth
coefficient co of h is

co = ao/bo,

the order one coefficient cl is

Cl (al -
boll-bo

etc.

Proof If we can show that the power series
00

Eci(x - c)i
i=o

converges on I then the result on multiplication of series in Proposition
10.2 yields this new result. There is no loss of generality in assuming
that c = 0. Assume for the moment that b1 0 0.

Notice that one may check inductively that, for j > 1 ,

Ici =
bo

(ai - b1 ci-1) (*)

Without loss of generality, we may scale the ais and the bis and
assume that the radius of I is 1 + e, some e > 0. Then we see from the
last displayed formula that

IciI <_ C - (fail + Ici-11) ,
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where C = max{I 1/bol, 1b1/bo1}. It follows that

lcjj <C'.(1+ja,I+lai-11+---+laol)

Since the radius of I exceeds 1, > laJl < oo and we see that the lc,l
are bounded. Hence the power series with coefficients cj has radius of
convergence 1.

In case b1 = 0 then the role of b1 is played by the first nonvanishing
b,,,,m > 1. Then a new version of formula (*) is obtained and the argu-
ment proceeds as before. 0

In practice it is often useful to calculate f 1g by expanding g in a
"geometric series." To illustrate this idea, we assume for simplicity that
f and g are real analytic in a neighborhood of 0. Then

AX) = Ax)- 1

g(x) g(x)
1

= f lx) - bo+blx+...

= AX) '
b0

' 1 + (b1 /bo)x + . - .

Now we use the fact that, for j3 small,

1 =1+0+Q2+...1-Q

Setting Q = -(bjlbo)x - (b2/bo)x2 - and substituting the resulting
expansion into our expression for f (x)/g(x) then yields a formula that
can be multiplied out to give a power series expansion for f (x)/g(x.).
We explore this technique in the exercises.

10.2 More on Power Series: Convergence Issues
We now introduce the Hadamard formula for the radius of convergence
of a power series.

Lemma 10.1
For the power series

Oc

Eai(x-

j =o

define A and p by
A = lim sup lanll/n

n-oo
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10 ifA = oo,
p= 1/Aif0<A<oo,

oo ifA=O,
then p is the radius of convergence of the power series about c.

Proof: Observing that

limsupla..(x-c)'I'"n = Alx - Cl,
n-.oo

we see that the lemma is an immediate consequence of the Root Test. 0

Corollary 10.1
The power series

C*

E a. (x - c)3
.7=o

has radius of convergence p if and only if, when 0 < R < p, there exists
a constant 0 < C = CR such that

From the power series

00

Ea.(x-c)'
.i=o

it is natural to create the derived series
00

Eja, (x-c)'
7=1

using term-by-term differentiation.

Proposition 10.4
The radius of convergence of the derived series is the same as the radius

of convergence of the original power series.

Proof: We observe that

limsuplnanl'/'L = lim n-'/nlimsuplfanl'/n
n-+oo n-co n-W0o

= lim sup Ian 11/n

n--+00
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So the result follows from the Hadamard formula.

Proposition 10.5
Let f be a real analytic function defined on an open interval I. Then

f is continuous and has continuous, real analytic derivatives of all or-
ders. In fact the derivatives of f are obtained by differentiating its series
representation term by term.

Proof: Since, for each c E I, the function f may be represented by a
convergent power series with positive radius of convergence, we see that,
in a sufficiently small open interval about each c E I, the function f is
the uniform limit of a sequence of continuous functions: the partial sums
of the power series representing f. It follows that f is continuous at c.
Since the radius of convergence of the derived series is the same as that
of the original series, it also follows that the derivatives of the partial
sums converge uniformly on an open interval about c to a continuous
function. It then follows from Theorem 9.4 that f is differentiable and
its derivative is the function defined by the derived series. By induction,
f has continuous derivatives of all orders at c.

We can now show that a real analytic function has a unique power
series representation at any point.

Corollary 10.2
If the function f is represented by a convergent power series on an

interval of positive radius centered at c,

j=0

then the coefficients of the power series are related to the derivatives of
the function by

f(j) (c)a3 -
.7!

Proof: This follows readily by differentiating both sides of the above
equation n times, as we may by the proposition, and evaluating at x = c.
0

Finally, we note that integration of power series is as well-behaved
as differentiation.
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Proposition 10.6
The power series

00

1 aj (x - c)j
j=A

and the series
0r0

O j j (x c)j+i

obtained from term by term integration have the same radius of conver-
gence, and the function F defined by

00

F(x) = E aj (x - c)j+'
j=0j+1

on the common interval of convergence satisfies

00

F'(x) aj (x - c)j = f (x)
j=o

Proof: The proof is left to the exercises. 0

It is sometimes convenient to allow the variable in a power series to
be a complex number. In this case we write

00

Eaj(z-c)j,

j=0

where z is the complex argument. We now allow c and the a js to be
complex numbers as well. Noting that the elementary facts about series
hold for complex series as well as real series (you should check this for
yourself), we see that the arguments of this section show that the domain
of convergence of a complex power series is a disc in the complex plane
with radius p given as follows:

A = lim sup Ian l1/n
n-oo

0 ifA=oo
p= 1/Aif0<A<oo

0o ifA=O.
The proofs in this section apply to show that convergent complex power
series may be added, subtracted, multiplied, and divided (provided that
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we do not divide by zero) on their common domains of convergence.
They may also be differentiated and integrated term by term.

These observations about complex power series will be useful in the
next section.

We conclude this section with a consideration of Taylor series:

Theorem 10.1 [Taylor's Expansion]
For k a nonnegative integer let f be a k + 1 times continuously dif-
ferentiable function on an open interval I = (a - e, a + e). Then, for
xEI,

k
9

AX) = E f(j) (a)
(x -a)

+ Rk a(x),

where

j=o

Rk,a(X) = f x
f(k+1) (t) (x k!t)k dt.

Proof: We apply integration by parts to the Fundamental Theorem of
Calculus to obtain

P X) = f (a) + f f' (t) dt
a

=f(a)+ (11(t)
a

f(a)+f'(a)(x-a)+ fxtNotice

that, when we performed the integration by parts, we used t - x
as an antiderivative for dt. This is of course legitimate, as a glance at
the integration by parts theorem reveals. We have proved the theorem
for the case k = 1. The result for higher k is obtained inductively by
repeated integrations by parts. D

Taylor's theorem allows us to associate with any infinitely differen-
tiable function a formal expansion of the form

00

Ea2(x-a)j.

i=o

However, there is no guarantee that this series will converge; even if it
does converge, it may not converge back to f (x). An important example
to keep in mind is the function

_
fe-11X2

0 ifx0
h(x)

if x 0.
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This function is infinitely differentiable at every point of the real line
(including 0). However, all of its derivatives at x = 0 are equal to
zero (this matter will be treated in the exercises). Therefore the formal
Taylor series expansion of h about a = 0 is

00

E =0.
3=0

We see that the formal Taylor series expansion for h converges to the
zero function at every x, but not to the original function h itself.

In fact the theorem tells us that the Taylor expansion of a function
f converges to f at a point x if and only if Rk,a(x) -> 0. In the exercises
we shall explore the following more quantitative assertion:

An infinitely differentiable function f on an interval I has
Taylor series expansion about a E I that converges back to
f on a neighborhood J of a if and only if there are positive
constants C, R such that for every x E J and every k it holds
that

Ifikl(x)I :S C. kk.

The function h considered above should not be thought of as an
isolated exception. For instance, we know from calculus that the function
f (x) = sin x has Taylor expansion that converges to f at every x. But
then fore small the function gf (x) = f (x) + e . h(x) has Taylor series
that does not converge back to gf (x) for x # 0. Similar examples may
be generated by using other real analytic functions in place of sine.

10.3 The Exponential and Trigonometric Functions
We begin by defining the exponential function:

Definition 10.2 The power series

00
Z-1

J=O
j!

converges, by the Ratio Test, for every complex value of z. The function
defined thereby is called the exponential function and is written exp(z).

Proposition 10.7
The function exp(z) satisfies

exp(a + b) = exp(a) exp(b)
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for any complex numbers a and b.

Proof: We write the right-hand side as

00
aJ

oc. W

EaEat'
J=0 J=o

Now convergent power series may be multiplied term by term. We find
that the last line equals

a,(J-e) be

J=O a=o
( - e}! e!

(*)

However, the inner sum on the right side of this equation may be written
as

j! a-'-W = 1 (a + b)J.
f!(J - e)! .7!

It follows that line (*) equals exp(a + b).

We set e = exp(1). This is consistent with our earlier treatment
of the number e in Section 4.4 The proposition tells us that, for any
positive integer k, we have

e = exp(k).k

If in is another positive integer then

(eXp(k/m))m = exp(k) = ek.

whence
exp(k/m) = ekim

We may extend this formula to negative rational exponents by using the
fact that exp(a) exp(-a) = 1. Thus, for any rational number q,

exp(q) = el.

Now note that the function exp is monotone increasing and contin-
uous. It follows (this fact is treated in the exercises) that if we set, for
anyrER,

e' =sup{qE Q:q<r}
(this is a definition of the expression el) then ex = exp(x) for every real
x. [You may find it useful to review the discussion of exponentiation in
Section 3.4; the presentation here parallels that one.] We will adhere
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to custom and write ex instead of exp(x) when the argument of the
function is real.

Proposition 10.8
The exponential function ex satisfies

(a) ex > O for all x;

(b) e° = 1;

(c)
(ex)'

= ex;

(d) ex is strictly increasing;

(e) the graph of ex is asymptotic to the negative x-axis

(f) for each integer N > 0 there is a number cN such that ex > CN X N
when x > 0.

Proof: The first three statements are obvious from the power series
expansion for the exponential function.

Ifs < t then the Mean Value Theorem tells us that there is a number
between s and t such that

hence the exponential function is strictly increasing.
By inspecting the power series we see that ex > 1 + x hence ex

increases to +oo. Since ex e-x = 1 we conclude that e-' tends to 0 as
x - +oo. Thus the graph of the exponential function is asymptotic to
the negative x- axis.

Finally, by inspecting the power series for ex, we see that the last
assertion is true with CN = 1/N!. 0

Now we turn to the trigonometric functions. The definition of the
trigonometric functions that is found in calculus texts is unsatisfactory
because it relies too heavily on a picture and because the continual need
to subtract off superfluous multiples of 27x is clumsy. We have never-
theless used the trigonometric functions in earlier chapters to illustrate
various concepts. It is time now to give a rigorous definition of the
trigonometric functions that is independent of these earlier considera-
tions.

Definition 10.3 The power series
00 x2j+1

(-1}1 (2j
+ 1)!

j=o
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converges at every point of the real line (by the Ratio Test). The function
that it defines is called the sine function and is usually written sin x.

The power series
x2S(-1)
(2j)!J=o

converges at every point of the real line (by the Ratio Test). The function
that it defines is called the cosine function and is usually written cos x.

You may recall that the power series that we use to define the sine
and cosine functions are precisely the Taylor series expansions for the
functions sine and cosine that were derived in your calculus text. But
now we begin with the power series and must derive the properties of
sine and cosine that we need from these series.

In fact the most convenient way to achieve this goal is to proceed
by way of the exponential function. [The point here is mainly one of
convenience. It can be verified by direct manipulation of the power
series that sin 2 x + cost x = 1 and so forth but the algebra is extremely
unpleasant.] The formula in the next proposition is usually credited to
Euler.

Proposition 10.9
The exponential ftmction and the functions sine and cosine are related

by the formula (for x and y real and i2 = -1)

exp(x + iy) = eX (cosy + i sin y)

Proof: We shall verify the case x = 0 and leave the general case for the
reader.

Thus we are to prove that

e'Y =cosy+isiny. (*)

Writing out the power series for the exponential, we find that the left-
hand side of (*) is

and this equals
z to 1 r 1s

I1 - 2i + 4 -+...1 +il -
3'

+ 5 -+...1

Of course the two series on the right are the familiar power series for
cosine and sine. Thus

e"=cosy +isiny,



10.3 The Exponential and Trigonometric Functions 271

as desired.

In what follows, we think of the formula (*) as defining what we
mean by e=s. As a result,

ex+'a = ex e'' = ex (cosy + i sin y).

Notice that e-'& = cos(-y) + i sin(-y) = cosy - i sin y (we know that
the sine function is odd and the cosine function even from their power
series expansions). Then formula (*) tells us that

e'V+e-'"
Cosy = 2

and

= e'y - e-'b
siny

2i

Now we may prove:

Proposition 10.10
For every real x it holds that

sing x + cost x = 1.

Proof: Simply substitute into the left side the formulas for the sine
and cosine functions which were displayed before the proposition, then
simplify the result.

We list several other properties of the sine and cosine functions that
may be proved by similar methods. The proofs are requested of you in
the exercises.

Proposition 10.11
The functions sine and cosine have the following properities:

(a) sin(s + t) = sins cost + cos s sin t;

(b) cos(s + t) = cos s cos t - sin s sin t;

(c) cos(2s) = cost a - sin 2 s;

(d) sin(2s) = 2 sins cos s;

(e) sin(-s) = -sins;

(f) cos(-s) = toss;
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(g) sin'(s) = cos s;

(h) cos'(s) = - sins.

One important task to be performed in a course on the foundations
of analysis is to define the number it and establish its basic properties.
In a course on Euclidean geometry, the constant 7r is defined to be the
ratio of the circumference of a circle to its diameter. Such a definition is
not useful for our purposes (however it is consistent with the definition
about to be given here).

Observe that cos 0 is the real part of ee0 which is 1. Thus if we set

a=inf{x>0:cosx=0}

then a > 0 and, by the continuity of the cosine function, cos a = 0. We
define it = 2a.

Applying Proposition 10.10 to the number a yields that sina = f1.
Since a is the first zero of cosine on the right half line, the cosine function
must be positive on (0, a). But cosine is the derivative of sine. Thus the
sine fimction is increasing on (0, a). Since sin 0 is the imaginary part of
eiO which is 0, we conclude that sina > 0 hence that sina = +1.

Now we may apply parts (c) and (d) of Proposition 10.11 with
s = a to conclude that sin it = 0 and cos 7r = -1. A similar calculation
with s = it shows that sin 27r = 0 and cos 27r = 1. Next we may use parts
(a) and (b) of Proposition 10.11 to calculate that sin(x + 21r) = sin x
and cos(x + 27r) = cosx for all x. In other words, the sine and cosine
functions are 21r-periodic.

The business of calculating a decimal expansion for it would take us
far afield. One approach would be to utilize the already-noted fact that
the sine function is strictly increasing on the interval [0, 7r/2] hence its
inverse function

Sin-1 : [0, 1] -' [0, 7r/2]

is well defined. Then one can determine (see Chapter 7) that

1, 1
(Sin-) (x) _

1-x

By the Fundamental Theorem of Calculus,

iit
= Sin-1(1) I dx

fo 1-x

By approximating the integral by its R.iemann sums, one obtains an
approximation to 7r/4 and hence to it itself. This approach will be
explored in more detail in the exercises.
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Let us for now observe that

22 2'° 26cos2=1- 2I+4I
-si+-...

=1-2+216 64

4
20+....

273

Since the series defining cos 2 is an alternating series with terms that
strictly decrease to zero in magnitude, we may conclude (following rea-
soning from Chapter 4) that the last line is less than the sum of the first
three terms:

2cos2<-1+3 <0.

It follows that at = n/2 < 2 hence a < 4. A similar calculation of
cos(3/2) would allow us to conclude that 7r > 3.

10.4 Logarithms and Powers of Real Numbers
Since the exponential function exp(x) = ex is positive and strictly in-
creasing it is a one-to-one function from R to (0, oo). Thus it has a
well-defined inverse function that we call the natural logarithm. We
write this function as In x.

Proposition 10.12
The natural logarithm function has the following properties:

(a) (In x)' = 1/x;

(b) Inx is strictly increasing;

(c) ln(1) = 0;

(d) In e = 1;

(e) the graph of the natural logarithm function is asymptotic to the
negative y axis;

(f) ln(s t) In s + In t;

(g) ln(s/t) = Ins - In t.

Proof: These follow immediately from corresponding properties of the
exponential function. For example, to verify part (f), set 8 = e° and
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t = el. Then

ln(s t) _ ln(e° e')
ln(eu+T)

= a +,r

=Ins+lnt.

The other parts of the proposition are proved similarly. 0

Proposition 10.13
If a and b are positive real numbers then

ab =

Proof: When b is an integer then the formula may be verified directly
using Proposition 10.12, part (f). For b = na/n a rational number the
formula follows by our usual trick of passing to nth roots. For arbitrary
b we use a limiting argument as in our discussions of exponentials in
Sections 3.3 and 10.3.

REMARK 10.2 We have discussed several different approaches to
the exponentiation process. We proved the existence of nth roots, n E N,
as an illustration of the completeness of the real numbers (by taking the
supremuin of a certain set). We treated rational exponents by composing
the usual arithmetic process of taking path powers with the process of
taking nth roots. Then, in Sections 3.4 and 10.3, we passed to arbitrary
powers by way of a limiting process.

Proposition 10.13 gives us a unified and direct way to treat all expo-
nentials at once. This unified approach will prove (see the next proposi-
tion) to be particularly advantageous when we wish to perform calculus
operations on exponential functions. I

Proposition 10.14
Fix a > 0. The function f (x) = ax has the following properties:

(a) (ay)' = ax In a;

(b) f (0) = 1;

(c) if 0 < a < 1 then f is decreasing and the graph off is asymptotic
to the positive x-axis;
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(d) if 1 < a then f is increasing and the graph off is asymptotic to
the negative x-axis.

Proof: These properties follow immediately from corresponding prop-
erties of the function exp.

The logarithm function arises, among other places, in the context of
probability and in the study of entropy. The reason is that the logarithm
function is uniquely determined by the way that it interacts with the
operation of multiplication:

Theorem 10.2
Let 4i(x) be a continuously differentiable function with domain the pos-
itive reals and which satisfies the identity

0 (s t) = ¢(s) + 0(t)

for all positive s and t. Then there is a constant C > 0 such that

f(x)

for all X.

Proof: Differentiate the equation (*) with respect to s to obtain

=¢'(s).

Now fix s and set t = 1/s to conclude that

(*)

We take the constant C to be 0'(1) and apply Proposition 10.12(a) to
conclude that ¢(s) = C Ins + D for some constant D. But 0 cannot
satisfy (*) unless D = 0, so the theorem is proved.

Observe that the natural logarithm function is then the unique con-
tinuously differentiable function that satisfies the condition (*) and whose
derivative at 1 equals 1. That is the reason that the natural logarithm
function (rather than the common logarithm, or logarithm to the base
ten) is singled out as the focus of our considerations in this section.
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10.5 The Gamma Function and Stirling's Formula

Definition 10.4 For x > 0 we define the function

(x) = e-ttx dt .
f

r

Notice that, by Proposition 10.8(f), the integrand for fixed x is
majorized by the function

t - I tx-1 if0<t<1f() (CN)-1 . tx-N-1 if 1 < t < 00.

We choose N so large that x - N - 1 < -2. Then the function f is
clearly integrable. By Theorem 8.4(ii), we conclude that the integral
defining r converges.

Proposition 10.15
For x > 0 we have

Proof:

r(x + 1) = x r(x).

We integrate by parts:

F(x+ 1) = txdt

fR
= lim J e-t tx dt

R-.+x 0
R

e-t . x , tx-1 dt= lim -e-t tXiR
+ foR-.+oc

0

Corollary 10.3
For n = 1,2,... we have r(n+ 1) = n!.

Proof: An easy calculation shows that r(1) = 1. With induction the
proposition then implies the result.

The corollary shows that the gamma function r is an extension
of the factorial function from the positive integers to the positive real
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numbers. One of the exercises at the end of the Chapter will ask you to
verify that the gamma function is real analytic on its domain.

Theorem 10.3 [Stirling's Formula]
The limit

n!
lim

n -cc I 2 7re-nnn+1/2 }

exists and equals 1. In particular, the value of n! is asymptotically equal
to

271 nn+1 /2

en

as n becomes large.

REMARK 10.3 Stirling's formula is important in calculating limits,
because without the formula it is difficult to estimate the size of n! for
large n. In this capacity, it plays an important role in probability theory,
for instance, when one is examining the probable outcome of an event
after a very large number of trials.

We present a particularly brief proof of Stirling's formula using the
gamma function. There are a number of other proofs, some of which use
complex analysis and some of which use direct estimation. I

Proof of Stirling's Formula: Fix x > 0. Perform the change of
variable t = x + s 2x in the equation

r(x + 1) = r a-ttx dt00
0

to obtain

°°r(x + 1) = fxx+1/2e-x a-a 2x
`1

+ s2/x)x ds.- x/2
We rewrite the integrand as

e

e

(ae_8
2
q=

where q is defined by the equation

2q(u)_- [u-ln(1+u)] , u>0.
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By 1'H6pital's Rule, q(u) - 1 as u 0{'. As x -+ +cc, the domain
of integration [- x/2, oo) expands to (-oo, oo); the integrand tends,
uniformly on compact sets of s, to a-82 (because the argument of q tends
to 0). It follows (details are explored in the exercises) that

I'(x + 1) fO° 2

---p f/ a ds./xx+1/2e-x oo

Thus our theorem is proved if we can evaluate the integral.
Set S = f . e-8 ds. Then

S S F-. e x2 dx F e-'2dy = rx x: e-(x2+N2) dxdyf
o0 cc

We introduce polar coordinates into this two dimensional integral:

2n

S2 =
poo

fo
e-2rd9dr

pOO 2

= 7r J e-r 2rdr
0

2N
= lim -ire -r

N-oo 10

=7r.

It follows that S = f and we are done.

Corollary 10.4
We havel'(1/2)= f.

0

Proof: Perform the change of variable t = s2 in the integral defining
I'(1/2). Then use the calculation of S in the proof of Stirling's formula.
0

Exercises
1. Prove Proposition 10.9.

2. Provide the details of the assertion preceding Proposition 10.8 to
the effect that if we define, for any real R,

er=sup{gEQ:q<r},

then ex = exp(x) for every real x.
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3. Give another proof for the formula for DN(t) by completing the
following outline:

(a) DN(t) = >n=_N eint.

(b) (ett - 1) . DN(t) = ei(N+1)t - e-iNt;(b) Multiply
bothl sides of the last equation bye `t/2.

(d) Conclude that DN (t) = 81e t+a it .

4. Assume that a power series converges at one of the endpoints of its
interval of convergence. Use summation by parts to prove that the
function defined by the power series is continuous on the closed
interval including that endpoint.

5. The function defined by a power series may extend continuously
to an endpoint of the interval of convergence without the series
converging at that endpoint. Give an example.

6. Prove Proposition 10.14 by following the hint provided.

7. Let f be an infinitely differentiable function on an interval I. If
a E I and there are positive constants C, R such that for every x
in a neighborhood of a and every k it holds that

f(k)(x)I <C. Rk,

then prove that the Taylor series of f about a converges to f (x).
(Hint: Estimate the error term.)

8. Let f be an infinitely differentiable function on an open interval
I centered at a. Assume that the Taylor expansion of f about a
converges to f at every point of I. Prove that there are constants
C, R and a (possibly smaller) interval J centered at a such that,
for each x E J, it holds that

Rkf(k)(x)I C-
t

* 9. Prove that the composition of two real analytic functions, when
the composition makes sense, is also real analytic.

10. Prove that
sin2x+cos2x = 1

directly from the power series expansions.

H. Prove the equality (Sin-')'= 1/ 1 - x2.
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* 12. In analyzing the integral representation of I'(x + 1) in the proof of
Stirling's formula we might have reasoned as follows: the integrand
may be rewritten as

e-s 2x
(1+ 8% 21x)

x

e-s 2x
I 1 +

s V-2-)

As x - +oo the expression in { } tends to es" hence the ex-
pression in [ J tends to es 2x It follows that the entire integrand
converges to 1. What is wrong with this argument?

13. Use one of the methods described at the end of Section 3 to cal-
culate 7r to two decimal places.

14. Prove Proposition 10.11.

15. Prove Proposition 10.12.

16. Prove that condition (*) of Theorem 10.2 implies that 0(1) _
0. Assume that 0 is differentiable at x = 1 but make no other
hypothesis about the smoothness of 0. Prove that condition (*)
then implies that 0 is differentiable at every x > 0.

* 17. Prove that if f2 is integrable on [0, 21r] then

00

If(n)12
n=-00

is convergent.

18. If f is continuously differentiable on the interval [0, 27r] and if
f'(0) = f'(27r) then prove that there is a constant C > 0 such
that J f(n)I < C/mni. (Hint: Integrate by parts.)

19. Show that the hypothesis of Theorem 10.2 may be replaced with
f E Lip.([0, 27r]), some a > 0.

20. If f is integrable on the interval [0, 21r] and if N is a nonnegative
integer then define

N
O'Nf(x) = N+1 SN(x).
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This is called the Nch Cesaro mean for the Fourier series of f .
Prove that

1 " t dt,
0

where
KN(x - t) =

1 fsinN21(x-t)
2

N+1 sin it

21. Refer to Exercise 20 for notation. Prove that if 8 > 0 then
limN . KN(t) = 0 with the limit being uniform for all I t[ > 8.

22. Refer to Exercise 20 for notation. Prove that 2,, fo" I KN(t)I dt =
1.

23. Use the results of the preceding three exercises to prove that if f
is continuous on [0, 2ir] and f (0) = f (2ir) then aN f (x) - AX)
uniformly on [0, 27r]. (Hint: Let e > 0. Choose 8 > 0 such that
is - tj < 8 implies that If (s) - f (t) I < e. Now divide the integral
into the set where ItI < 8 and the set where Its > 8 and imitate the
proof of the Weierstrass Approximation Theorem.

24. If p(x) = EN_N then calculate

1 j2lr

21r
Ip(x)I2 dx

explicitly in terms of the ans.

25. If f is an integrable function on [0, 2ir] and 0 < r < 1 then define*

where
1-r2

1 - 2r cos(x - t) -f- r2

Imitate your solution of Exercise 23 to prove that if f is continuous
on [0, 27r] and f (O) = f (27r) then P,. f (x) --t f (x), uniformly in x,
as r->1

1 2ir

P,. f (x) = - I P (x - t) (t) dt
0
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26. Let f (x) _ E'J ajxj be defined by a power series convergent on
the interval (-r, r) and let Z denote those points in the interval
where f vanishes. Prove that if Z has an accumulation point in the
interval then f - 0. (Hint: If a is the accumulation point, expand
f in a power series about a. What is the first nonvanishing term
in that expansion?)

27. Prove that if a function on an interval I has derivatives of all orders
which are positive at every point of I then f is real analytic on I.

* 28. Formulate and prove a convergence theorem for integrals that will
justify the last step in the proof of Stirling's formula.

* 29. Verify that the function

10 ifx=0
f(x) 1 e-Ix2 if x 0

is infinitely differentiable on all of 1R and that f (k) (0) = 0 for every
k.

30. Provide the details of the proof of Proposition 10.13.

31. Prove that r(x) is real analytic on the set (0, oc).

32. Complete the following outline of a proof of Ivan Niven (see [NIV])
that 7r is irrational:

(a) Define

*

*

AX) =
x"(ln x)"

where n is a positive integer to be selected later. For each
0 < x < 1 we have

0 < f(x) < 1/n!. (*)

(b) For every positive integer j we have f (i) (0) is an integer.

(c) f (1 - x) = f (x) hence f(i) (1) is an integer for every positive
integer j.

(d) Seeking a contradiction, assume that 7r is rational. Then 7r2 is
rational. Thus we may write 7r2 = a/b, where a, b are positive
integers and the fraction is in lowest terms.

(e) Define
F(x) = b" (7r2nf

(x)

-7r2"-2 f (2) (x) + 7r2n-4f(4) (x)
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- ... + (-1)n f(2n)(x))

Then F(O) and F(1) are integers. J

(f) We have

[F'(x) sin(7rx)

-7rF(x) c os(7rx))

= 7r2an f (x) sin(7rx).

(g) We have
i

Iran
J

f (x) sin(irx) dx
0

[F(x)sinx '11
F(x) cos

7r
lrxJ

o

= F(1) + F(0).

(h) From this and (*) we conclude that

< 7Can f (x) sin(7rx) dxj0

Iran
< < 1.

n!

When n is sufficiently large this contradicts the fact that

F(0) + F(1) is an integer.

33. Use the technique described at the end of Section 10.1 to calculate
the first six terms of the power series expansion of sin x/ez about
the origin.

34. Use the technique described at the end of Section 10.1 to calculate
the first six terms of the power series expansion of in x/ sin x about
c=v/2.





Chapter 11

Applications of Analysis to
Differential Equations

Differential equations are the heart and soul of analysis. Virtually any
law of physics or engineering or biology or chemistry can be expressed as
a differential equation-and frequently as a first-order equation (i.e., an
equation involving only first derivatives). Much of mathematical analysis
has been developed in order to find techniques for solving differential
equations.

Most introductory books on differential equations devote themselves
to elementary techniques for finding solutions to a very limited selection
of equations. In the present book we take a different point of view. We
instead explore certain central and broadly applicable principles which
apply to virtually any differential equation. These principles, in partic-
ular, illustrate some of the key ideas of the book.

11.1 Picard's Existence and Uniqueness Theorem
11.1.1 The Form of a Differential Equation

A fairly general first-order differential equation will have the form

dx
F(x, y). (*)

Here F is a continuously differentiable function on some domain (a, b) x
(c, d). We think of y as the dependent variable (that is, the function
that we seek) and x as the independent variable. For technical reasons,
we assume that the function F is bounded,

I F(x, y)I 5 M, (**)

and in addition that F satisfies a Lipschitz condition:

IF(x, s) - F(x, t)I 5 C C. is - tj. (***)

285
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[In many treatments it is standard to assume that F is bounded and
8F/8y is bounded. It is easy to see, using the mean value theorem, that
these two conditions imply (**), (***).]

Example 11.1

Consider the equation

dy =x2siny-ylnx.

Then this equation fits the paradigm of equation (*) with F(x, y) _
x2 sin y - y In x provided that 1 < x < 2 and 0 < y < 3 (for in-
stance).

In fact the most standard, and physically appealing, setup for a
first-order equation such as (*) is to adjoin to it an initial condition. For
us this condition will have the form

y(xo) = yo - (*)

Thus the problem we wish to solve is (*) and (*) together.
Picard's idea is to set up an iterative scheme for doing so. The most

remarkable fact about Picard's technique is that it always works: As
long as F satisfies the Lipschitz condition, then the problem will possess
one and only one solution.

11.1.2 Picard's Iteration Technique
While we will not actually give a complete proof that Picard's technique
works, we will set it up and indicate the sequence of functions it produces
that converges uniformly to the solution of our problem.

Picard's approach is inspired by the fact that the differential equa-
tion (*) and initial condition (*), taken together, are equivalent to the
single integral equation

F[t, y(t)] dt. (**)y(x) = yo + lox

We invite the reader to differentiate both sides of this equation, using
the Fundamental Theorem of Calculus, to derive the original differential
equation (*). Of course the initial condition (*) is built into (**). This
integral equation inspires the iteration scheme that we now describe.

We assume that xo E (a, b) and that yo E (c, d). We set

y1(x) = Yo + J 0 F(t, yo) dt.
To
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For x near to xo, this definition makes sense. Now we define

y2(x) = ,
p

and, more generally,

x

y}+1(x) =
J

F(t, y,, (t)) dt . ()
xp

It turns out that the sequence of functions {y', y2, ...} will converge
uniformly on an interval of the form (xo - h, xo + h) C (a, b).

11.1.3 Some Illustrative Examples
Picard's iteration method is best apprehended by way of some examples
that show how the iterates arise and how they converge to a solution.
We now proceed to develop such illustrations.

Example 11.2
Consider the initial value problem

y =2y, y(0)=1.

Of course this could easily be solved by the method of first
order linear equations, or by separation of variables (see [KRS]
for a description of these methods). Our purpose here is to
illustrate how the Picard method works.

First notice that the stated initial value problem is equiva-
lent to the integral equation

y(x) = 1 + J 2y(t) dt.x
0

Following the paradigm (x), we thus find that

yj+i(x) = 1 +J x2y3(x)dx.
0

Using yo(x) = 1, we then find that

yl (x) = 1 + I 2 dt = 1 + 2x,x
0

X

y2(x) = 1+fo 2(1+2t)dt= 1+2x+2x2,

y3(x) = 1 + /x2(1+2t+2t2)dt= 1+2x+2x2+ 4x3
Jo
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In general, we find that

e(x)+ i+(22)2 +(3!3

+...+(2x)
7

1' e=o

It is plain that these are the partial sums for the power series
expansion of y = e2x. We conclude that the solution of our
initial value problem is y = e2x.

Example 11.3

Let us use Picard's method to solve the initial value problem

y' = 2x - y , y(0) = 1.

The equivalent integral equation is

y(x) = 1 + j[2t - y(t)] dt

and (***) tells us that

1 + x;2t - y3 (t)] dt.1

yl(x) = 1+J x(2t- 1) dt = 1+x2 -x.
0

112 (X) = 1+Jx (2t- [l+t2-t)) dt
0

3

+

2

2 3
y3(x)=1+ Jx(2t-[1+3t2/2-t-t3/31) dt

2 3 4=1+2-x- 2 +-.3
y4(x)=1+J(2t--[1+3t2/2-t-t3/2+t4/4.31) dt

3x2 x3 x4 x5+-x--+--
2 2 4 2 5.4.3

In general, we find that
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3x2 3x3 3x4

+(-1)13x3 2x1+1

j! (.7+1)!
y i 2xj+1

[2x - 2] + 3 L(-1)1 + (-1)1+1
1=0 7 U + 1)!

Of course the last term tends to 0 as j - +oo. Thus we see that
the iterates y3(x) converge to the solution y(x) = [2x-2]+3e-*
for the initial value problem. 0

11.1.4 Estimation of the Picard Iterates
To get an idea of why the assertion at the end of Subsection 11.1.2-that
the functions yi converge uniformly-is true, let us do some elementary
estimations. Choose h > 0 so small that h C < 1, where C is the
constant from the Lipschitz condition (***). We will assume in the
following calculations that (x - xo I < h.

Now we proceed with the iteration. Let yo(t) be identically equal to
the initial value yo. Then

Z

I YOM - Y1 (01 = [yo - y1(t)1 = I
J

F(t, yo) dtl
xo

< rt F(t, yo) I dt
xo

<M.Ix - xoI
<

We have of course used the boundedness condition (**).
Next we have

Iy1(x) - Y2(X)1 = I f.x F(t,
yo(t)) dt - L' F(t, y1(t)) dtl

o o

5
fz

IF(t, yo(t)) - F(t, y1(t))I dt
mo

<

One can continue this procedure to find that

Iy2(x)-ys(x)I 5M.C'2-h3=M-h'(Ch)2
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and, more generally,

Iy3(x) - y3+i(x)I _< M C3 . h3+1 < M h (Ch)'.
Now, if 0 < K < L are integers, then

IYK(x) -YL(x)I IyK(x) -YK+1(x)I + IYK+I(x) - yK+2(x)I

M h ([Ch]x + [Ch]x+1 +... [Ch)L-1).

Since I ChI < 1 by design, the geometric series E3[Ch]3 converges. As
a result, the expression on the right of our last display is as small as we
please, for K and L large, just by the Cauchy criterion for convergent
series. It follows that the sequence {y3 } of approximate solutions con-
verges uniformly to a function y = y(x). In particular, y is continuous.

Furthermore, we know that

y3+1(x) = fF(t.yj(t))dt.
u

Letting j oc, and invoking the uniform convergence of the y3, we may
pass to the limit and find that

y(x) = f F(t, y(x)) dt .

This says that y satisfies the integral equation that is equivalent to
our original initial value problem. This equation also shows that y is
continuously differentiable. Thus y is the function that. we seek.

It can be shown that this y is in fact the unique solution to our
initial value problem. We shall not provide the details of the proof of
this assertion.

In case F is not Lipschitz-say that F is only continuous-then it
is still possible to show that a solution y exists. But it will no longer be
unique.

11.2 The Method of Characteristics
Characteristics are a device for solving partial differential equations. The
idea is to reduce the partial differential equation to a family of ordinary
differential equations (as in Section 11.1) along curves. Here we shall
illustrate the idea with a few carefully chosen examples.

Consider a first-order partial differential equation of the form

a(x,t)-+b(x,t) =c(x,t)2v+d(x,t.). (t)
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The idea is to think of the left-hand side as a directional derivative along
a curve. To that end, we solve the auxiliary equations

d = a(x,t) and
d

= b(x,t) ($)

What is going on here is that we have created a family of curves x =
x(s), t = t(s) whose tangent vector (x'(s), t'(s)) coincides with the di-
rection of the vector (a, b), which is the "direction" along which the
differential equation is operating. This device enables us to reduce the
partial differential equation (t) to an ordinary differential equation that
often can be solved by elementary methods. With this idea in mind, we
see that the derivative of v(x, t) along the described curves becomes

dv _ dv[x(s), t(s)]
ds - ds

_ av dx av dt
ax ds + cat ds

=a o Ot

=cv+d.

Here we have used the chain rule and the equations (f) and ($).
We now illustrate with some simple examples.

Example 11.4

Consider the partial differential equation

+c 0.

This is the unidirectional wave equation. We impose initial con-
ditions, at t = 0, given by

v(x, 0) = G(x) .

Here G is some input functions.
It is convenient to parameterize the "initial curve", or the

curve along which the initial condition is specified, by

x=-r, t=0, v(r, O) = G(r) .

Now the characteristic equations, as indicated in ($) and ($$),

(*)

are
dx dt dv
d

_
s

C,
_

ds 1 ' ds
0
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Of course we may solve these equations easily (taking into ac-
count (*) with s = 0). The result is

x(T, S) = CS + T , t(T, s) = s , v(T, s) = G(r). (**)

Ultimately we wish to express the solution v in terms of the
given data G. With this thought in mind, we solve the first two
equations for s and r as functions of x and t. Thus

s=t, r=x-ct.
Finally, we substitute these simple formulas into the equation
for v in (**) to obtain

v(x, t) = v(T, s) = G[r(x, t)] = G[x - ct].

Verify for yourself that this v satisfies the differential equation
with initial condition. 0

Example 11.5

Let us use the method of characteristics to solve the differential
equation

x +t =cu, u(x,I)= f(x)i§j

We begin by parameterizing the initial curve as

x ='r , t = 1 , u(T, 1) = f(7-).

The characteristic equations are

dx dt du
ds-x' ds

_t' ds-cu.

Now we may solve these characteristic equations, keeping in
mind the initial conditions at s = 1. The result is

x(T, s) = -re' , t(-r, s) = e8 , u(T, s) = f (T)e" .

[We have used here, of course, our knowledge from elementary
ordinary differential equations of finding exponential solutions
of first order differential equations.]

As usual, we solve the first two of these for s and T in terms
of x and t. Thus

s=lnt and
xT= t.

Inserting these into the equation for u gives
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This is the solution to the original problem.
Note in passing that the differential equation we have been

analyzing may be said to have singular coefficients since the
vector of coefficients on the left-hand side vanishes at the origin.
It results that solution has a corresponding singularity. 0

11.3 Power Series Methods
One of the techniques of broadest applicability in the subject of differ-
ential equations is that of power series, or real analytic functions. The
philosophy is to guess that a given problem has a solution that may
be represented by a power series, and then to endeavor to solve for the
coefficients of that series. Along the way, one uses (at least tacitly)
fundamental properties of these series-that they may be differentiated
and integrated term by term, for instance. And that their intervals of
convergence are preserved under standard operations.

Example 11.6

Let p be an arbitrary real constant. Let us use a differential
equation to derive the power series expansion for the function

y=(1+x)".
Of course the given y is a solution of the initial value problem

Y(O)=I.
We assume that the equation has a power series solution

00

y = E ajxi = ao + aix + a2x2 +...

j=o

with positive radius of convergence R. Then
00

Y' Ej,ajxj-1 =ai+2a2x+3a3x2+...;
j=1

00

xy'=1:
j=1

00

Ph =rpajxi =Pao+paix+Fla2x2+...

j=o
By the differential equation, we see that the sum of the first two
of these series equals the third. Thus

00 00 00

1:jaix3 -1 +> ja1x3 _ Epa., x'
j=1 j=1 j=0
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We immediately see two interesting anomalies: the powers of x
on the left-hand side do not match up, so the two series cannot
be immediately added. Also the summations do not all begin in
the same place. We address these two concerns as follows.

First, we can change the index of summation in the first
sum on the left to obtain

00 00 x

i(i +1)a,+1x7 +Eja,x' =Epa_,x3.

J=O -7 =1 -7 =o

Write out the first few terms of the new sum, and the original
sum, to see that they are just the same.

Now every one of our series has x3 in it, but they begin at
different places. So we break off the extra terms as follows:
00 00 00

E(j + 1)aj+ix3 ->pa_,x3 = -alxo+paoxo.
3=1 J=1 J=1

Notice that all we have done is to break off the zeroeth terms
of the first and third series, and put them on the right.

The three series on the left-hand side of (*) are begging
to be put together: they have the same form, they all involve
powers of x, and they all begin at the same index. Let us do so:

00

E [(j + 1)a3+l + ja, - pa.] x3 = -al + pao .
3=1

Now the powers of x that appear on the left are 1, 2, ..., and
there are none of these on the right. We conclude that each
of the coefficients on the left is zero; by the same reasoning,
the coefficient (-a1 + pao) on the right (i.e., the constant term)
equals zero. So we have the equations'

--al+pao=0
(j + 1)a.,+1 + (j - p)a, = 0.

Our initial condition tells us that ao = 1. Then our first
equation implies that al = p. The next equation, with j = 1,
says that

2a2 + (1 - p)al = 0 .

Hence a2 = (p-1)al/2 = (p- 1)p/2. Continuing, we take p = 2
in the second equation to get

3a3 + (2 - p)a2 = 0

(*)

IA set of equations like this is called a recursion. It expresses a?s with later indices
in terms of a?s with earlier indices.
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so a3 = (p - 2)a2/3 = (p - 2)(p -

We may continue in this manner to obtain that

p(p - 1)(p - 2)...(p - j + 1)
a3=

j!

Thus the power series expansion for our solution y is

p(p - 1) p(p - 1)(p - 2)y=1+px+
21

x+
3!

+
+p(p- 1)(p-2)...(p- j+1)xj+...

j!
Since we knew in advance that the solution of our initial value
problem was

y=(1+x)P,
we find that we have derived Isaac Newton's general binomial
theorem (or binomial series):

(1 + x)' = 1 + p x + 2 1 l ) + 1 1 2 )- 2) + ...

+p(p- 1)(p-2)...(p-

j!
0

Example 11.7

Let us consider the differential equation

lr=Y.
Of course we know from elementary considerations that the

solution to this equation is y = C C. ex, but let us pretend that
we do not know this. Our goal is to instead use power series to
discover the solution. We proceed by guessing that the equation
has a solution given by a power series, and we proceed to solve
for the coefficients of that power series.

So our guess is a solution of the form

y =ao+alx+a2x2+a3x3+ .

Then
YI =a1+2a2x+3a3x2+

and we may substitute these two expressions into the differential
equation. Thus

al +2a2x+3a3x2+ =ao+alx+a2x2+
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Now the powers of x must match up (i.e., the coefficients must
be equal). We conclude that

a1 = ao
2a2 = a1

3a3 = a2

and so forth. Let us take a0 to be an unknown constant C.
Then we see that

a1 = C;
a2

a3

In general,

C
2'
C
3.2;

etc.

C
an = - .

In summary, our power series solution of the original differential
equation is

00 i00

E7x'=C.Ex
j=0 1 j=0 7

Thus we have a new way, using power series, of discovering the
general solution of the differential equation y' = y. 0

Example 11.8
Let us use the method of power series to solve the differential
equation

(**)(1-x2)yll - 2xy' + p(p + 1)y = 0.
Here p is an arbitrary real constant. This is called Legendre's
equation.

We therefore guess a solution of the form
00

and calculate

y ao +alx+a2x2 +-
j=0

00

y' = 1: jaixi ' = a1 + 2a2x + 3a3x2 + .. .
j=1
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and

00

1/l = j(j - 1)a'xj-2 = 2a2 + 3.2 a3x + ... ,
i=22

It is most convenient to treat the differential equation in the
form (**). We calculate

00

E j(j - 1)ajx'
j=2

and
00

-2xy' > 2jaix' .

j=1

Substituting into the differential equation now yields

00 00 00 00

Ej(j_l)aix3-2-Ej(j_l)aix3->2jajx3+p(p+l)>a'x' =0.
i=2 i=2 j=1 j=0

We adjust the index of summation in the first sum so that it
contains xi rather than xj-2 and we break off spare terms and
collect them on the right. The result is

00 00

2 +2)(j+ 1)aj+2xJ - j(j - 1)ajx'
j=2

i=22

00 00

-E2jajx' +p(p+ 1) 1: ajxi
j=2 j=2

_ -2a2 - 6a3x + 2alx - p(p + 1)ao - p(p + 1)alx.

In other words,

[(j + 2)(j + 1)aj+2 - j(j - 1)aj - 2jai + p(p + 1)ai] xi
j=2

= -2a2 - 6a3x + 2alx - p(p + 1)ao - p(p + 1)alx.

As a result,

[(+2i+1)ai+2_(i_1aJ_2aa+P(P+1aiJ =0 for j =2,3,...

together with

-2a2 - p(p + 1)ao = 0
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and

-6a3 + 2a1 - p(p + 1)al = 0.

We have arrived at the recursion

p(p + 1)

a2 1 2 -ao,

a1a3 = _ (p - 1)(p + 2)

2.3

a3+2 =
(p-j)(p+j+1)

-a. for j =2.3,.... (**A)- (j+2)(j+1)
We recognize a familiar pattern: The coefficients ao and a2 are
unspecified, so we set ao = A and al = B. Then we may proceed
to solve for the rest of the coefficients. Now

a2 = -
p(p + 1)

9
2

a3=_ (p-1)(p+2).B
2-3

a4
(p - 2)(p + 3) = p(p - 2)(p + l)(p + 3) A ,

3.4 a2
4!

a5 = (p-3)(p+4)a3
4.5

(p - l)(p - 3)(p + 2)(p + 4)

5!
B ,

(p - 4)(p + 5)
a6

- - 5 6
a4

p(p - 2)(p - 4)(p + 1)(p + 3)(p + 5)
A

6!

(p - 5)(p + 6)
aT

6 7 a5

(p - 1)(p - 3)(p - 5)(p + 2)(p + 4)(p + 6)
- B

7!

and so forth. Putting these coefficient values into our supposed
power series solution we find that the general solution of our
differential equation is

y All p(p+1)x2+__-2)(p+1)(p+3) .,p(p

l 2! 4!
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p(p - 2) (p - 4)(p + 1) (p + 3) (p + 5) xg + _ ...l
6!

+B X- (p - 1)(p+ 2)x3 + 3 ) ( p 2 ) ( p , 16

3! 5!

(p- 1)(p-3)(p- 5)(p+2)(p+4)(p+6)x7+_...J
7! J

We assure the reader that, when p is not an integer, then
these are not familiar elementary transcendental functions. They
are what we call Legendre functions. In the special circumstance
that p is a positive even integer, the first function (that which
is multiplied by A) terminates as a polynomial. In the special
circumstance that p is a positive odd integer, the second func-
tion (that which is multiplied by B) terminates as a polynomial.
These are called Legendre polynomials, and they play an impor-
tant role in mathematical physics, representation theory, and
interpolation theory.

Some differential equations have singularities. In the present con-
text, this means that the higher order terms have coefficients that vanish
to high degree. As a result, one must make a slightly more general guess
as to the solution of the equation. This more general guess allows for
a corresponding singularity to be built into the solution. Rather than
develop the full theory of these Frobenius series, we merely give one
example.

Example 11.9

We use the method of Frobenius series to solve the differential
equation

2x2y"+x(2x+1)y'-y=0 (f)

about the regular singular point 0.
We guess a solution of the form

00 00y=xm.>. ajxj = [1ajxm+j
j=0 1=00

and therefore calculate that
00Y,

= E(m + j)ajxm+j-1

j=0

and
00

Y" = 1:(m+j)(m+j - 1)ajxm+j-2.

j=0
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Substituting these calculations into the differential equation yields

00

2E(m + j)(m+ j - 1)a3xm+J
J=0

0c

+2 1: (ni + j)a3x""+1
3=0
00 00

+(m + j)a3xm+J - a2xm+J
J==0 J=0

=0.

We make the usual adjustments in the indices so that all
powers of x are x'+J, and break off the odd terms to put on
the right-hand side of the equation. We obtain

2>(m+j)(m+j - 1)a3xm+J
J=1

no

+2E(m+j - 1)a3 _lx'"+J
J=1
x oc

+ E(m + j)a Jxm+J - Ea.Xn+j

JJ=1 J=1

= -2m(m - 1)aoxm - maoxm + aoxm .

The result is

[2(m + j)(m + j - 1)a3 + 2(m + j - 1)aJ_1

+(m + j)a3 -a.
J

= 0

for j =1,2,3,...

together with

($)

[-2m(r - 1) - m + 1]ao = 0.

It is clearly not to our advantage to let ao = 0. Thus

-2m.(m-1)-m+1=0.
This is the zndzczal equation.

The roots of this quadratic equation are rn = -1/2,1. We
put each of these values into ($) and solve the resulting recursion.



11.3 Power Series Methods

Now ($) says that

(2m2+2j2+4mj-j-m-1)a1=(-2m-2j+2)ai_1.
For m = -1/2 this is

=
3-2ja -3j +2j2ai-1

so
1 1

al = -ao , a2 = --a1 = 2-ao , etc..

For m = I we have

-2j
ai = 3j+2j2ai-1

so
2 4 4

a1=-5ao, a2=-14a1=35ao.
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Thus we have found the linearly independent solutions

aox-1/2 (1 - x + 2x2 - +...)

and
2 4 2

The general solution of our differential equation is then

y=Ax-1/2 (1-x+2x2-+...}+Bx (1-

0

Exercises
1. Use the method of Picard iteration to solve the initial value prob-

lem y' = x + y,y(0)=3.

2. Use the method of Picard iteration to solve the initial value prob-
lemy' =y - 3x,y(1)=2.

3. A vector field is a function

F(x, y) = (ck(x, y), ,6(.T, y))

that assigns to each point in the plane R2 a vector. We call a curve
ry : (a, b) - R2 an integral curve of the vector field if

'?'(t) = F(-y(t))
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for each t. Thus 'y "flows along" the vector field, and the tangent
to the curve at each point is given by the value of the vector field
at that point.

Put suitable conditions on F that will guarantee that if P E JR2
then there will be an integral curve for F through the point P.
(Hint: Of course use the Picard theorem to obtain your result.
What is the correct initial value problem?)

4. Give an example which illustrates that the integral curve that you
found in Exercise 3 will only, in general, be defined in a small
neighborhood of P. [Hint: Think of a vector field that "dies out."]

5. Refer to Exercises 3 and 4. Find integral curves for each of the
following vector fields:

(a) F(x, y) = (-y, x)
(b) F(x, y) _ (x + 1, y - 2)
(c) F(x, y) = (2xy, x2)

(d) F(x, y) = (-x, 2y)

6. For each differential equation, sketch the family of solutions on a
set of axes:

(a) y' - xy = 1
(b) y'+y=e'
(c) y' = x
(d) y'=1-y

7. Does the Picard theorem apply to the initial value problem

edN/dz + LY = x2 , y(1) = 2?

Why or why not? [Hint: Think in terms of the Implicit Function
Theorem-Section 13.4.1

8. Formulate a version of the Picard theorem for vector-valued func-
tions. Indicate how its proof differs, if at all, from the proof for
scalar-valued functions. Now explain how one can use this vector-
valued version of Picard to obtain an existence and uniqueness
theorem for kth-order ordinary differential equations.

9. Verify that the function y = 1/ 2(x+ 1) is a solution of the
differential equation

y' + y3 = 0. (*)
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Can you use separation of variables to find the general solution?
[Hint: It is y =1/ 2(x + c).] Now find the solution to the initial
value problem (*) with initial condition y(l) = 4.

10. Check that the function

y= /ln(1+z2)+C

solves the differential equation

dy x3

dx y+y -

Find the particular solution that satisfies the initial condition y(O) _
2.

11. Use the method of characteristics to solve the partial differential
equation

+ta =V v(x,0)=x.i5i

12. Use the method of characteristics to solve the partial differential
equation

-2x --xt , u(x,1)=x2.

13. Use the method of characteristics to solve the partial differential
equation

au au

at ax
=t - x.

14. Give a geometric interpretation of the idea of characteristic of a
partial differential equation. Suppose that the differential equation
describes a heat flow. Then what do the characteristics mean?

15. A partial differential equation is called characteristic if, at some
point, a characteristic curve of the equation is tangent to the sur-
face along which the initial condition is specified. Give an example
of an equation that is characteristic, and explain why the method
of Section 11.2 breaks down in these circumstances.

16. The Picard theorem of Section 11.1 explains why the method of
characteristics makes good philosophical sense. That is to say, at
each point of the surface along which the initial condition is spec-
ified, there will be a characteristic curve that crosses the surface.
And the different characteristic curves will be disjoint-at least
near the surface. Explain why this is so.
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17. Explain why the method of power series would not work very well
to solve the differential equation

y'-jxly=sinx.

18. Solve the initial value problem

y" -xy=x2 , y(0) =2,y'(0) = 1

by the method of power series.

19. Solve the initial value problem

y'-xy=sinx , y(1)=2

by the method of power series. [Hint: Given the nature of the
initial condition, it would be best to use power series in powers of
(x -1).]

20. Solve the differential equation
/i, ,Y -xy =x

by the method of power series. Since there are no initial conditions,
you should obtain a general solution with three free parameters.

21. Solve the initial value problem

y-y=x , y(0) = 1

both by Picard's method and by the method of power series. Verify
that you get the same solution by both means.

22. When you solve a differential equation by the method of power
series, you cannot in general expect the power series to converge on
the entire real line. As an example, solve the differential equation

1 = 1

y'+a; 1+x2
by the method of power series (expanded about 1). What is the
radius of convergence of the power series? Can you suggest why
that is so?

23. Solve the differential equation

1+x2

by the method of power series (expanded about 0). What is the
radius of convergence of the power series? Can you suggest why
that is so?
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24. Consider the differential equation

y'f-y=x2.

The function x2 is even. If the function y is even, then y" will be
even also. Thus it makes sense to suppose that there is a power
series solution with only even powers of x. Find it.

25. Consider the differential equation

y"+y=x3.

The function x3 is odd. If the function y is odd, then y" will also
be odd. Thus it makes sense to suppose that there is a power series
solution with only odd powers of x. Find it.

26. Explain how the method of characteristics should work in three
dimensions. Now solve the partial differential equation

av 8v 8vx8x+y +zaz=v v(x,1,0)=x.

27. Verify that the curve x = re8, t = e2s is a characteristic curve for
the partial differential equation

2t- +x- =0

with the initial condition v(x, 1) = F(x). Here we parametrize the
initial curve by x = r, t = 1, v('r, 1) = F(r).





Chapter 12

Introduction to Harmonic
Analysis

12.1 The Idea of Harmonic Analysis
Fourier analysis first arose historically in the context of the study of a
certain partial differential equation of mathematical physics (see Sub-
section 12.4.4 below). The equation could be solved explicitly when the
input (i.e., the right-hand side of the equation) was a function of the
form sin jx or cosjx for j an integer. The question arose whether an
arbitrary input could be realized as the superposition of sine functions
and cosine functions.

In the late eighteenth century, debate raged over this question. It
was fueled by the fact that there was no solid understanding of just
what constituted a function. The important treatise [FOU] of Joseph
Fourier gave a somewhat dreamy but nevertheless precise method for
expanding virtually any function as a series in sines and cosines. It
took almost a century, and the concerted efforts of Dirichlet, Cauchy,
Riemann, Weierstrass, and many other important analysts to put the
so-called theory of "Fourier series" on a rigorous footing.

We now know, and can prove exactly, that if f is a differentiable
function on the interval [0, 21r] then the coefficients

1 a
o

give rise to a series expansion

f (t) = > cjeait
9=0

that is valid (i.e., convergent) at every point. [Notice that the convenient
notation 0' given to us by Euler's formula carries information both

307
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about the sine and the cosine.] This expansion validates the vague but
aggressive ruminations in [FOU] and lays the foundations for a powerful
and deep method of analysis that today has wide applicability in physics,
differential equations, and harmonic analysis.

In the present chapter we shall explore the foundations of Fourier
series and also learn some of their applications. All of our discussions
will of course be rigorous and precise. They will certainly take advantage
of all the tools of analysis that we have developed thus far in the present
book.

12.2 The Elements of Fourier Series
In this section it will be convenient for us to work on the interval [0, 27r].
We will perform arithmetic operations on this interval modulo 27r : for
example, 37r/2+37r/2 is understood to equal 7r because we subtract from
the answer the largest multiple of 21r that it exceeds. When we refer to
a function f being continuous on [0,27r], we require that it be right
continuous at 0, left continuous at 27r, and that f (0) = f (27r).

If f is a (either real- or complex-valued) Riemann integrable function
on this interval and if n E Z then we define

J (n) _
27r

f27r f(t)e-t
dt .

We call f (n) the ,nth Fourzer coefficient of f. The formal expression

x
Sf (x) " r` f(n)e:nx

n=-oc

is called the Fourzer series of the function f. In circumstances where
the Fourier series converges to the function f , some of which we shall
discuss below, the series provides a decomposition of f into simple com-
ponent functions. This type of analysis is of importance in the theory of
differential equations, in signal and image processing, and in scattering
theory. There is a rich theory of Fourier series which is of interest in its
own right.

Observe that, in case f has the special form
N

f(X) aea-7t

J=-N

then we may calculate that

f
f(t)edt

= a1 J e'nt dt .1:N o7=-

(*)
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Now the integral equals 0 if j n (this is so because fu " eikt dt = 0
when k is a nonzero integer). And the term with j = n gives rise to
an - 1. Thus we find that

2R
-in tan = 1

1

f(t)e dt. (**)

0

Since, in Exercise 25 of Chapter 9, we showed that functions of the
form (*) are dense in the continuous functions, we might hope that a
formula like (**) will give a method for calculating the coefficients of a
trigonometric expansion in considerable generality. In any event, this
calculation helps to justify (after the fact) our formula for f (n).

The other theory that you know for decomposing a function into
simple components is the theory of Taylor series. However, in order for
a function to have a Taylor series it must be infinitely differentiable.
Even then, as we have learned, the Taylor series of a function usually
does not converge, and if it does converge its limit may not be the
original function-see Section 10.2. The Fourier series off converges to
f under fairly mild hypotheses on f, and thus provides a useful tool in
analysis.

The first result we shall prove about Fourier series gives a growth
condition on the coefficients f (n) :

Proposition 12.1 [Bessel's inequality]
If f 2 is integrable then

c[N 2,r

L IfII2 < If(t)I2dt.
n=-N 0

Proof: Recall that eiit = e-ijt and Ia12 = a if for a E C. We calculate

12,
If(t) - SN(t)I2 dt

e

2,,

(,f(t) - >2 f(n)e'-t) . (1(t) - N f(n)eintl dt21r1 Jn=- N n=-N
2w N _

f (t)e ine dt . f (n)
27r

If(t)I2 dt - 1
27r

12,

n=-N
N _

2a

j f(t)e-in'
dt . f(n) + 2

f2v et,r t a-:nt dt .
n=-N 0 m n
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Now each of the first two sums equals En _N I f (n) I2. In the last sum.
any summand with m # n equals 0. Thus our equation simplifies to

j2, j2,,,
'2

N

If(t) SN(t)I dt If(t)IZdt - E If(n)12.
n=-N

Since the left side is nonnegative, it follows that

Ti=-N

as desired. (]

Corollary 12.1
If f 2 is integrable then the Fourier coefficients f (n) satisfy

f (n) -> 0 as n -t oo.

Proof: Since > If(n) I2 < oc we know that If(n)12 -* 0. This implies
the result. 0

REMARK 12.1 In fact, with a little extra effort, one can show that
the conclusion of the corollary holds if only f is integrable. This entire
matter is addressed from a slightly different point of view in Proposition
12.6.

Definition 12.1 Let f be an integrable function on the interval
[0.27r]. We let SN(x) denote the Nth partial sum of the Fourier series
off.

N _

SNf (x) _ f (n)e'nS
n=-N

Since the coefficients of the Fourier series, at least for a square in-
tegrable function, tend to zero, we might hope that the Fourier series
will converge in some sense. Of course the best circumstance would be
that SNf --+ f (pointwise. or in some other manner). We now turn our
attention this problem.

N _ 27r

If (n)12 <- 2v I If(t)I2dt,
0
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Proposition 12.2 [The Dirichlet Kernel]
If f is integrable then

1 ax

SNf(x) = DN(x-t)f(t)dt+

where

Proof: Observe that

DN(t) - sin(N + a)t
sin at

N _

SNf (x) _ E f (n)einx
n=- N

N 1 aR

f (t)e-int dt , einx

n=-N `Z7C p

N a+

f (t)ein(x-t) dt
n=-N 27r p

1
2w N
f (t)

ein(x-t) dt.
- 27r p n=-N
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Thus we are finished if we can show that the sum in (] equals DN(x-t).
Rewrite the sum as

E (e`(x-t) )n + (e-(x-t))n - 1 .1:
n=0 \ n=0

Then each of these last two sums is the partial sum of a geometric series.
Thus we use the formula from Proposition 4.5 to write the last line as

ei(x-t)(N+1) - 1 e-'(x-t)(N+1) - 1

ei x-t) - 1 + e-i(x-t) - 1
- 1.

We put everything over a common denominator to obtain

cos N(x - t) - cos(N + 1)(x - t)
1 - cos(x - t)

We write

N(x - t) _ ((N + 2)(x - t) -
2

(x - t) ) ,
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(N + 1)(x - t) ((N+_ 2 )(x - t) +
2

(x - t))

1 1(x-t)=2(x-t)+2(x-t)

and use the sum formula for the cosine function to find that the last line
equals

2sin((N+ 1 ) (x - t)) sin (1 (x - t))2 2

2 sing (2 (x - t))

sin(N + 2)(x - t)

sin1(x-t)
= DN(x - t).

That is the desired conclusion.

REMARK 12.2 We have presented this particular proof of the
formula for DN because it is the most natural. It is by no means the
shortest. Another proof is explored in the exercises.

Note also that, by a change of variable, the formula for SN presented
in the proposition can also be written as

N(t)f
(x - t) dtSNP X) = 27f j

2a D

provided we adhere to the convention of doing all arithmetic modulo
multiples of 2ir. I

Lemma 12.1
For any N it holds that

i 1 j2-
DN (t) dt = 1.

Proof: It would be quite difficult to prove this property of DN from
the formula that we just derived. However, if we look at the proof of
the proposition we notice that

N

DN(t) _ esnt

l n=-N

Hence
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1 2,r N

2ir

f2s

DN(t) dt 2- / F, eine dt
JO n=-N

N 1 2w[: _ eint dt
n=L-N 27r 0

=1
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because any power of e't, except the zeroeth power, integrates to zero.
This completes the proof. 0

Next we prove that, for a large class of functions, the Fourier series
converges back to the function at every point.

Theorem 12.1
Let f be a function on [0, 21r] that satisfies a Lipschitz condition: there

is a constant C > 0 such that if s, t E [0, 27r] then

If (S) - f(t)I S C. Is - tI. (s)

[Note that at 0 and 27r this condition is required to hold modulo 2ir--see
the remarks at the beginning of the section.] Then, for every x E 10, 21r],
it holds that

SN f (x) -f (x) as N -oo .
Indeed, the convergence is uniform in x.

Proof: Fix X E [0, 27r]. We calculate that

ISNf(x) - f(x){ = I- f(x
- t)DN(t) dt - f(x)I

= I 1 J f(x - t)DN(t) dt
2w

1

in- 2 J
f (x)DN (t) dt I ,

0

where we have made use of the lemma. Now we combine the integrals
to write
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ISNI(x) - f(x)I

f"(f(x-t)-f(x)]DN(t)dtl21r
_ 1

2,, - ) ((N+
= 1 ,f

[f(x
sin t/2 ] 'sin )t)dto

JJ
2n

C 1

[ A X - 0 _ A X ) cost sin Nt dtl
21o sin t/2

zn _ _ 1

/2f
(x)

'sin 2J cos Nt dt
+ 27r 0[ f

(x
sin

t-/2f(x)

227r

102v
h(t) sin Nt dtl + 12 J 2' k(t) cos Ntdtl

0

where we have denoted the first expression in [ J by h.,(t) = h(t) and
the second expression in [ J by kx(t) = k(t). We use our hypothesis (*)
about f to see that

Ih(t)I = I
f (x - tt -Ax)

1-1
sin(t/2) I

2l < C 4.

[Here we have used the elementary fact that 2/7r < I sin u/uJ < 1.J Thus
h is a bounded function. It is obviously continuous, because f is, except
perhaps at t = 0. So h is integrable-since it is bounded it is even square
integrable. An even easier discussion shows that k is square integrable.
Therefore Corollary 12.1 applies and we may conclude that the Fourier
coefficients of h and of ktend to zero. However, the integral involving
h is nothing other than (h(N) - h(-N))/(2i) and the integral involving
k is precisely (k(N) + k(-N))/2. We conclude that these integrals tend
to zero as N -+ oc; in other words,

ISNf(x)-f(x)I 0 as N -,oc.

Since the relevant estimates are independent of x, we see that the con-
vergence is uniform. 0

Corollary 12.2
If f E C1([0, 27rJ) then SN f -. f uniformly.

Proof: A C' function, by the Mean Value Theorem, satisfies a Lipschitz
condition. 0
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In fact the proof of the theorem suffices to show that if f is a Rie-
mann square-integrable function on [0, 2ir] and if f is differentiable at x
then SN f (x) - f (x).

In the exercises we shall explore other methods of summing Fourier
series that allow us to realize even discontinuous functions as the limits
of certain Fourier expressions.

It is natural to ask whether the Fourier series of a function charac-
terizes that function. We can now give a partial answer to this question:

Corollary 12.3
If f is a function on [0, 2a] that satisfies a Lipschitz condition and if

the Fourier series off is identically zero then f =_ 0.

Proof: By the preceding corollary, the Fourier series converges uni-
formly to f. But the Fourier series is 0.

Corollary 12.4
If f and g are functions on (0, 21r] that satisfy a Lipschitz condition and

if the Fourier coefficients off are the same as the Fourier coefficients of
g then f =- g.

Proof: Apply the preceding corollary to f - g.

Example 12.1

Let f (t) = t2 - 27rt, 0 < t < 2ir. Then f (0) = f (27r) = 0 and
f is Lipschitz modulo 21r. Calculating the Fourier series of f,
setting t = 0, and using the theorem reveals that

=
E 1 7r

2

-2= s'
j1

You are requested to provide the details. 0

12.3 An Introduction to the Fourier Transform
It turns out that Fourier analysis on the interval [0, 2a] and Fourier
analysis on the entire real line R are analogous; but they differ in certain
particulars that are well worth recording. In the present section we
present an outline of the theory of the Fourier transform on the line.
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A thorough treatment of Fourier analysis in Euclidean space may
be found in [STG]. See also [KRA2]. Here we give a sketch of the the-
ory. Most of the results parallel facts that we have already seen in the
context of Fourier series on the circle. Others will reflect the structure
of Euclidean space.

We define the Fourier transform of an integrable function f on R
by

f(e) = J
f (t)eit'{ dt.

Many references will insert a factor of 27r in the exponential or in the
measure. Others will insert a minus sign in the exponent. There is no
agreement on this matter. We have opted for this particular definition
because of its simplicity.

We note that the significance of the exponentials e" is that the
only continuous multiplicative homomorphisms of R into the circle group
are the functions Ot(t) = eit'E,C E R. These functions are called the
characters of the additive group R. We refer the reader to [KRA2] for
more on this matter.

Proposition 12.3
If f is an integrable function, then

If(e)I < f If(x)I dx.

Proof: Observe that, for any C E R,

(t)eitdt
JR

f < Jlf(t)e*tIdt ff(t)Idt.

Proposition 12.4
If f is integrable, f is differentiable, and f' is integrable, then

(f') (S) = -id w (C)

Proof: Integrate by parts: if f is an infinitely differentiable function
that vanishes outside a compact set, then

(f') f f'(t)eit' dt dt

Jf(t)[e1t]'dt

_ -iC J f (t)eit f dt
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=

[Of course the "boundary terms" in the integration by parts vanish since
f vanishes outside a compact set.] The general case follows from a lim-
iting argument (see the Appendix at the end of this section).

Proposition 12.5
If f is integrable and ix f is integrable, then

(ixf) _ f

Proof: Differentiate under the integral sign.

Proposition 12.6 [The R.iemann-Lebesgue Lemma]
If f is integrable, then

Proof: First assume that g E C2(1R) and vanishes outside a compact
set. We know that IgI is bounded. Also

I[g"]-I < f 19"(x){ dx = C'-

ThenThen (1 + is bounded. Thus

C', Ifl--

This proves the result for g E C,2,. [Notice that the argument also shows
that if g E C2(R) and vanishing outside a compact set then g is inte-
grable.]

Now let f be an arbitrary integrable function. Then there is a
function 0 E C2(R), vanishing outside a compact set, such that

fff(x) - fi(x)I dx < e/2.

[See the Appendix to this section for the details of this assertion.] Choose
M so large that when ICI > M then IL(e)I < e/2. Then, for I<;I > M, we
have

IRoI = I(f -lG) (o+wI
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< I(f-0) ()I+kt(e)I
5 JR If(x) - (x)I dx + 2

E<2+2=e.
This proves the result. p

REMARK 12.3 The Riemann-Lebesgue lemma is intuitively clear
when viewed in the following way. Fix an integrable function f. An
integrable function is well-approximated by a continuous function. so
we may as well suppose that f is continuous. But a continuous function
is well-approximated by a smooth function (see the Appendix to this
section), so we may as well suppose that f is smooth. On a small
interval I-say of length 1/M-a smooth function is nearly constant.
So, if we let ICI >> 27rM2, then the character e1C x will oscillate at least
Al times on I, and will therefore integrate against a constant to a value
that is very nearly zero. As M becomes larger, this statement becomes
more and more accurate. That is the Riemann-Lebesgue lemma.

Proposition 12.7
Let f be integrable on R. Then f is uniformly continuous.

Proof: Let us first assume that f is continuous and vanishes outside a
compact set. Then

lim f lim f (x)e`{ dx
--

= f(ro) -
co E Eo 1 EE0

[Exercise: Justify passing the limit under the integral sign.] Since f
also vanishes at oo, the result is immediate when f is continuous and
vanishing outside a compact set. The general result follows from an ap-
proximation argument (see the Appendix to this section). 0

Let C0(R) denote the continuous functions on R that vanish at oo.
Equip this space with the supremum norm. Then our results show that
the Fourier transform maps the integrable functions to Co continuously.

It is natural to ask whether the Fourier transform is univalent; put
in other words, can we recover a function from its Fourier transform?
If so, can we do so with an explicit integral formula? The answer to
all these questions is "yes", but advanced techniques are required for
the proofs. We cannot treat them here. We content ourselves with the
formulation of a single result and its consequences.
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Theorem 12.2
Let f be a continuous, integrable function on R and suppose also that
f is integrable. Then

AX) = !. f f ( )e-ix d
R

for every x.

Corollary 12.5
If f is continuous and integrable and f (l;) - 0 then f - 0.

Corollary 12.6
If f, g are continuous and integrable and f (t;) = g(Is) then f - g.

We refer to the circle of ideas in this theorem and the two corollaries
as "Fourier inversion". See [KRA2] for the details of all these assertions.

12.3.1 Appendix: Approximation by Smooth Functions
At several junctures in this section we have used the idea that an inte-
grable function may be approximated by smooth functions. We take a
moment now to discuss this idea. Not all of the details appear here, but
the interested reader may supply them as an exercise.

Let f be any integrable function on the interval [0,11. Then f may
be approximated by its Riemann sums in the following sense. Let

O=xo<x1

be a partition o f the interval. F o r j = 1, ... , k define

Oif 0<x<x2_1
h,(x)= lifxj_1<x<xj

Oif x,<x<1.
Then the function

Rf (x) _ f(xj) hi (x)
j=1

is a Riemann sum for f and the expression

IR If(x) -Rf(x)I dx (*)
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will be small if the mesh of the partition is sufficiently fine. In fact the
expression (*) is a standard "distance between functions" that is used in
mathematical analysis (for more on the concept of "metric", see Chapter
14). We often denote this quantity by 11f - Rf II L' and we call it "the
L1 norm" or "Ll distance". More generally, we call the expression

J
I9(x)I dx - II9IIL-

the L1 norm of the function g.
Now our strategy is to approximate each of the functions h3 by a

"smooth" function. Let f (x) = 10x3 -15x4 +6x5. Notice that f (0) = 0,
f (1) = 1, and both f and f" vanish at 0 and at 1.

The model for the sort of smooth function we are looking for is

0 if x<-2
f(x+2)if-2<x<-1

O(x)= 1 if -1<x<1
f(2-x)if 1<x<2
0 if 2<x.

Refer to Figure 12.1. You may calculate that this function is twice
continuously differentiable. It vanishes outside the interval [-2,2). And
it is identically equal to 1 on the interval [-1, 11.

More generally, we will consider the functions

0

'06(x) =

forb>0and 2x-b-a

b > 0 and a < b. Figure 12.2 shows that i,bia is similar to the function
,0, but its sides are contracted so that it climbs from 0 to 1 over the
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Figure 12.1

interval [-1- 5, -1] of length 5 and then descends from 1 to 0 over the
interval [1, 1 + 5] of length 5. The function b) is simply the function
V56 adapted to the interval [a, b] (Figure 12.3). The function ' aa'b climbs
from 0 to 1 over the interval [a - (S(b - a))/2, a] of length 5(b - a)/2
and descends from 1 to 0 over the interval [b, b + (5(b - a)/2)] of length
b(b - a)/2.

Finally, we approximate the function h7 by k7 (x) zliax''''x' for
j = 1, ... , k. See Figure 12.4. Then the function f is approximated in
Ll norm by

k

Sf (x) f (x7) . k7 (x)
7=1

See Figure 12.5. If b > 0 is sufficiently small, then we can make
Sf IILI as small as we please.

The approximation by twice continuously differentiable (or C2) func-
tions that we have constructed here is easily modified to achieve approx-
imation by Ck functions for any k. One merely replaces the polynomial
f by a polynomial that vanishes to higher order (order at least k) at 0
and at 1.
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Figure 12.2

b

Figure 12.3
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Figure 12.4

a

Y=RX)

b

Figure 12.5
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12.4 Fourier Methods in the Theory of Differential
Equations

In fact an entire separate book could be written about the applications
of Fourier analysis to differential equations and to other parts of math-
ematical analysis. The subject of Fourier series grew up hand in hand
with the analytical areas to which it is applied. In the present brief
section we merely indicate a couple of examples.

12.4.1 Remarks on Different Fourier Notations
In Section 12.2, we found it convenient to define the Fourier coefficients
of an integrable function on the interval [0, 2ir] to be

2

f (n) =
27r

f n

.f (x)e-inx dx.

0

From the point of view of pure mathematics, this complex notation has
proved to be useful, and it has become standardized.

But, in applications, there are other Fourier paradigms. They are
easily seen to be equivalent to the one we have already introduced. The
reader who wants to be conversant in this subject should be aware of
these different ways of writing the basic ideas of Fourier series. We will
introduce one of them now, and use it in the ensuing discussion.

If f is integrable on the interval [-7r, ir] (note that, by 27r-periodicity,
this is not essentially different from [0, 27r]), then we define the Fourier
coefficients

ao = 2- f f (x) dx,

1an = - f f (x) cos nx dx for n > 1,

1 "bn = - f f (x) sin nx dx for n > 1.

This new notation is not essentially different from the old, for

1(n) =
2

[an + ibn]

for n > 1. The change in normalization (i.e., whether the constant before
the integral is 1/ir or 1/21r) is dictated by the observation that we want
to exploit the fact (so that our formulas come out in a neat and elegant
fashion) that

1
le-intl2 dt = 1,

27r

j2,r
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in the theory from Section 12.2 and that

1 "

2n

1
I cosnt12 dt = 1 fore > 1 ,

-nit

/"`J I sinnt12 dt = 1 for n>- 1
n

in the theory that we are about to develop.
It is clear that any statement (as in Section 12.2) that is formulated

in the language of f (n) is easily translated into the language of an and
b and vice versa. In the present discussion we shall use an and b, just
because that is the custom, and because it is convenient for the points
that we want to make.

12.4.2 The Dirichlet Problem on the Disc

We now study the two-dimensional Laplace equation, which is

0z 2

dx2 + aye = 0. (*)

This is probably the most important differential equation of mathemati-
cal physics. It describes a steady state heat distribution, electrical fields,
and many other important phenomena of nature.

It will be useful for us to write this equation in polar coordinates.
To do so, recall that

r2 = x2 +Y 2 , x = r cos 9 , y = r sin O .

Thus

a ax a ay a=
0a sin 9aar

-
ar 8x

+
ar ay

cos
ax +

ay
a ax a ay a -r sin 9a+ r cos 9

Te To Tx
+

ae ay ax ay

We may solve these two equations for the unknowns a/ax and 8/8y.
The result is

a 8 sinew a a COS 0 1

Tx=wear-r 89
and Ty=sin9O- r 59
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A tedious calculation now reveals that

02 a2 (cos a sin 0 a (cos a sine a 1
a7X2 + ft2 = 8ar r ag B ar r a81

+ (sin9 - COT
9

8) (sin 95-
cos B al

a2 1 a 1
82

art + r ar + r2 a92 .

Let us use the so-called separation of variables method to analyze our
partial differential equation (*). We will seek a solution w = w(r, 9) _
u(r) v(9) of the Laplace equation. Using the polar form, we find that
this leads to the equation

u"(r) v(9) + ru'(r) - v(9) + r u(r) v"(9) = 0.

Thus
r2u"(r) + ru'(r) _ v"(9)

u(r) v(O)

Since the left-hand side depends only on r, and the right-hand side only
on 9, both sides must be constant. Denote the common constant value
by A.

Then we have
v"+Av=0

and

r2uif +ru'-au=0.

(*)

If we demand that v be continuous and periodic, then we must insist.
that A > 0 and in fact that A = n2 for some nonnegative integer n..t
For n = 0 the only suitable solution is v = constant and for n. > 0 the
general solution (with A = n2) is

y=Acosn9+Bsinn9,

as you can verify directly.
We set \ = n2 in equation (**), and obtain

r2u"+ru'-n2u=0. (t)

1 More explicitly, A = 0 gives a linear function for a solution and A < 0 gives an
exponential function for a solution



12.4 Fourier Methods in the Theory of Differential Equations 327

which is Euler's equidimensional equation. The change of variables
r = eZ transforms this equation to a linear equation with constant co-
efficients, and that can in turn be solved with standard techniques. To
wit, the equation that we now have is

u'-n2u=0.
The variable is now z. We guess a solution of the form u(z) = C Z. Thus

a2ea: - n2e°`Z = 0

so that

a2 = ±n.

($)

Hence the solutions of ($) are

u(z) = e"Z and u(z) = e-"Z

provided that n 34 0. It follows that the solutions of the original Euler
equation (#) are

u(r) = r" and u(r) = r-" for n 36 0.

In case n = 0 the solution is readily seen to be u = 1 or u = In r.
The result is

u=A+Blnr ifn=0;
u = Ar" + Br-" if n = 1, 2, 3, ... .

We are most interested in solutions u that are continuous at the origin;
so we take B = 0 in all cases. The resulting solutions are

n=0, w = a constant ao/2;
n = 1 , w = r(al cos 0 + bi sin 0) ;

n=2, w = r2(a2cos20+ b2 sin 20);
n = 3 , w = r3(a3cos30+b3sin30);

Of course any finite sum of solutions of Laplace's equation is also a
solution. The same is true for infinite sums. Thus we are led to consider

1

00

w=wr8(, ) = Zao+E rj(aj cosj6+6j sinj9).
i=o

On a formal level, letting r - 1- in this last expression gives

1
00

2 ao + 1:(ai cos jb + b,, sin j9) .
1=1
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f- - initial
neat distnbution

Figure 12.6

We draw all these ideas together with the following physical rubric.
Consider a thin aluminum disc of radius 1, and imagine applying a heat
distribution to the boundary of that disc. In polar coordinates, this
distribution is specified by a function f (9). We seek to understand the
steady-state heat distribution on the entire disc. See Figure 12.6. So
we seek a function w(r, 0). continuous on the closure of the disc, which
agrees with f on the boundary and which represents the steady-state
distribution of heat inside. Some physical analysis shows that such a
function w is the solution of the boundary value problem

Lw=U,

u = f.
18D

According to the calculations we performed prior to this last para-
graph, a natural approach to this problem is to expand the given function
f in its sine/cosine series:

f(9) = j6)
J=1

and then posit that the w we seek is
x

w(r, 9) = 2ao + r (a_ cos j9 + b., sin j9) .
J=1

This process is known as solving the Dirichlet problem on the disc with
boundary data f.
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+1

-1

Figure 12.7

Example 12.2

Let us follow the paradigm just sketched to solve the Dirichlet
problem on the disc with f (8) = 1 on the top half of the bound-
ary and f (8) _ -1 on the bottom half of the boundary. See
Figure 12.7.

It is straightforward to calculate that the Fourier series (sine
series) expansion for this f is

4 sin39 sin 50f (O) _ sin 8 + 3 + +
5

+

The solution of the Dirichlet problem is therefore

4/ r3sin38 r$sin58w(r,8) _ (rsin8+ 3 ++ 5 +

0

12.4.3 The Poisson Integral
In the last section we have presented a formal procedure with series for
solving the Dirichlet problem. But in fact it is possible to produce a
closed formula for this solution. This we now do.

Referring back to our sine series expansion for f, and the resulting
expansion for the solution of the Dirichlet problem, we recall for j > 1
that

ai = ! j f(0)eosjgdd and bj = 1
J

f(4)sinj4dO
a A x
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w(r,9) = 2ao+y`ri ( f f(4)cosjOdOcosj9
j=1 ( 7r

n
+1 f f (O) sin jO dO sin j9

ir 7r

This, in turn, equals

2ao + a y
00

ri f
A

f (O) [cos jocos jB + sin josin j9d¢l
j=1 J

00 71

= 2ao + -1: rj
o)

[ cosj(O - O)d01.
j=1

We finally simplify our expression to

w(r,9) I2 +1:ricosj(9-0)I do.
j=1

It behooves us, therefore, to calculate the sum inside the integral. For
simplicity, we let a = 9 - 0 and then we let

z = re° = r(cos a + i sin a).

Likewise
z" = r'e" = r" (cos rca + i sin na).

Let Re z denote the real part of the complex number z. Then

00 00

ricosja=Re 2E+E
j=1 j=1

= Re

= Re

[1+ 1

2 1-z

I

l+z
2(1 - z)

=Ref (1+z)(1-z)1
L 211-z12 J

211 - z12

1 - r2

1 - Iz12

2(1 - 2rcosa + r2)
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Putting the result of this calculation into our original formula for w
we finally obtain the Poisson integral formula:

1 - r2
w(r, 0) =

1

27r 1, 1 - 2r cos a + r2 f (46)
dO .

Observe what this formula does for us: It expresses the solution of the
Dirichlet problem with boundary data f as an explicit integral of a
universal expression (called a kernel) against that data function f.

There is a great deal of information about w and its relation to f
contained in this formula. As just one simple instance, we note that
when r is set equal to 0 then we obtain

w(0, 0) = 2- f f (-0) dcb

This says that the value of the steady-state heat distribution at the
origin is just the average value of f around the circular boundary.

Example 12.3

Let us use the Poisson integral formula to solve the Dirichlet
problem for the boundary data f (t) = e2, ,I. We know that the
solution is given by

" 1 - r2
w(r, 9)

27r 2rcos a + r2 f (-0) dcb

_ 1 1 - r2 e2:m d¢
27r 1 - 2r cos a + r2

With some effort, one can evaluate this integral to find that

w(r, 0) = r2e20 .

In complex notation, w is the function z u-+ z2. p

12.4.4 The Wave Equation
We consider the wave equation

a2yxx = Ytt

on the interval [0, 7r] with the boundary conditions

y(0,t) = 0

(f)

and

y(7r, t) = 0.
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the vibrating string

79

Figure 12.8

r

This equation, with boundary conditions, is a mathematical model for
a vibrating string with the ends (at x = 0 and x = ir) pinned down.
The function y(x, t) describes the ordinate of the point x on the string
at time t. See Figure 12.8.

Physical considerations dictate that we also impose the initial con-
ditions

0 "Y

at
=0

t=o

(indicating that the initial velocity of the string is 0) and

y(x,0) = f(x)

($)

(indicating that the initial configuration of the string is the graph of the
function f).

We solve the wave equation using a version of separation of variables.
For convenience, we assume that the constant a = 1. We guess a solution
of the form u(x, t) = u(x) v(t). Putting this guess into the differential
equation

Uxx = utt

gives
u"(x)v(t) = u(x)v"(t).

We may obviously separate variables, in the sense that we may write

u"(x) _ v"(t)
u(x) v(t)
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The left-hand side depends only on x while the right-hand side de-
pends only on t. The only way this can be true is if

u"(x) _ A _ v"(t)
u(x) v(t)

for some constant A. But this gives rise to two second-order linear,
ordinary differential equations that we can solve explicitly:

Observe that this is the same constant A in both of these equations.
Now, as we have already discussed, we want the initial configuration of
the string to pass through the points (0, 0) and (ir, 0). We can achieve
these conditions by solving (*) with u(0) = 0 and u(r) = 0.

This problem has a nontrivial solution if and only if A = n2 for some
positive integer n, and the corresponding function is

un(x) = sin nx.

For this same A, the general solution of (**) is

v(t) = A sin nt + B cos nt.

If we impose the requirement that v(0) = 0, so that (t) is satisfied, then
A = 0 and we find the solution

v(t) = Bcosnt.

This means that the solution we have found of our differential equation
with the given boundary and initial conditions is

yn (x, t) = sin nx cos nt. (***)

And in fact any finite sum with constant coefficients (or linear combi-
nation) of these solutions will also be a solution:

y = ai sinxcost+a2sin2xcos2t+ aksinkxcoskt.

This is called the "principle of superposition".
Ignoring the rather delicate issue of convergence, we may claim that

any infinite linear combination of the solutions (***) will also be a so-
lution:

00

y = E b, sin jx cos jt . (*)
i=1
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Now we must examine the final condition (fl). The mandate y(x, 0) _
f (x) translates to

or.

37 b., sin ix = y(x, 0) = f (x)
l=1

or

(x) = y(x. 0) = f (x)

Thus we demand that f have a valid Fourier series expansion. We know
from our studies earlier in this chapter that such an expansion is valid for
a rather broad class of functions f. Thus the wave equation is solvable
in considerable generality.

We know that our eigenfunctions u, satisfy

u" = -m2u1n m and u;; _ -n2'un

Multiply the first equation by un and the second by u,, and subtract.
The result is

if 2 2Unum - u1n'uyl = (n - M )unu,n

or

[ununt - urn ur:, =
(n2 - m2)zGn'um .

We integrate both sides of this last equation from 0 to ;r and use
the fact that u3(0) = u., (lr) = 0 for every j. The result is

n

0 = (unurn - uruf,]I = (n2 - m2) J um(x)Un(S) dx.
0 0

Thus

or

fo

7r

sin inx sin nx dx = 0 for n # m

IT

um (x )un (x) dx = 0 for n # m.

(tt)

(ttt)

Of course this is a standard fact from calculus. It played an important
(tacit) role in Section 12.2, when we first learned about Fourier series.
It is commonly referred to as an "orthogonality condition," and is fun-
damental to the Fourier theory and the more general Sturm-Liouville
theory. We now see how the condition arises naturally from the differ-
ential equation.
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In view of the orthogonality condition (ttt), it is natural to integrate
both sides of (mar) against uk(x). The result is

f f (x) . uk (x) dx = f"
[biU3(x)] - uk (x) dx

0 0
a-o

0
_ b, fu3(s)ua(x)dx

30
= 2bk.

The bk are the Fourier coefficients that we studied in earlier in this
chapter.

Certainly Fourier analysis has been one of the driving forces in the
development of modern analysis. Questions of sets of convergence for
Fourier series led to Cantor's set theory. Other convergence questions led
to Dirichlet's original definition of convergent series. Riemann's theory
of the integral first occurs in his classic paper on Fourier series. In turn,
the tools of analysis shed much light on the fundamental questions of
Fourier theory.

In more modern times, Fourier analysis was an impetus to the de-
velopment of functional analysis, pseudodifferential operators, and many
of the other key ideas in the subject. It continues to enjoy a symbiotic
relationship with many of the newest and most incisive ideas in mathe-
matical analysis.

One of the modern vectors in harmonic analysis is the development
of wavelet theory. This is a "designer" version of harmonic analysis
that allows the user to customize the building blocks. That is to say:
classically, harmonic analysis taught us to build up functions from sines
and cosines; wavelet theory allows us to build up functions from units
that are tailored to the problem at hand. This has proved to be a
powerful tool for signal processing, signal compression, and many other
contexts in which a fine and rapid analysis is desirable. In Chapter 15
we give a rapid and empirical introduction to wavelets, concentrating
more on effects than on rigor. The chapter makes more than the usual
demands on the reader, and certainly requires an occasional suspension
of disbelief. The reward is a rich and promising theory, together with
an invitatation to further reading and study.
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1. Find the Fourier series of the function

7r if-7r<x<
2=AX) 0if2<x<7r.

2. Find the Fourier series for the function

0if-7r<<x<0
f(x)= lif0<x<2

0 if 2 <x<7r.

3. Find the Fourier series of the function

f(x)

0 if-7r<x<0
sinxif0<x<7r.

4. Solve Exercise 3 with sin x replaced by cos x.

5. Find the Fourier series for each of these functions. Pay special
attention to the reasoning used to establish your conclusions; con-
sider alternative lines of thought.

(a) f (x) = 7r , -7r < x < 7r

(b) f (x) = sin x , -7r < x < it

(c) f (x) = cos x , -7r < x < 7r

(d) f(x)=7r+sinx+cosx -7r <I

Solve Exercises 6 and 7 without actually calculating the Fourier
coefficients.

6. Find the Fourier series for the function given by

(a)
f(x)_

{_aif_lncx<Qa if0<x<7r
for a a positive real number.

(b)

f(x) l if -7r < x < 0
- 1 ifO<x<7r
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(c)

f(x) =
iif-it<x<0

if0<x<,r
(d)

(e)

f(x)_ 1if-W<x<0
- 2 ifO<x<ir

Ax)
11if-7r<x<0
2if0<x<7r

7. Find the Fourier series for the periodic function defined by

f(x)° {-irif-7r<x<0
x if0<x<7r

Sketch the graph of the sum of this series on the interval -sir <
x < 5ir and find what numerical sums are implied by the conver-
gence behavior at the points of discontinuity x = 0 and x = ir.

8. (a) Show that the Fourier series for the periodic function

f(x)
-{0 if-ir<x<0

x2if0<x<wr

is

2 00

f(x) =
6

+2E(-1)j
j=1

j2

00

+ar D-1N+1
sin jx - 4 00 sin(2j - 1)x

3j 7r 1:
j=1 j=1 (21 - 1)

(b) Sketch the graph of the sum of this series on the interval

-5ir < x < 5zr.

(c) Use the series in part (a) with x = 0 and x = u to obtain the
two sums

1 1 1 Tr21-22+32-42+-...=12
and

.1+22+32+42+...=
6

a

(d) Derive the second sum in (c) from the first. Hint: Add
2E,(1/[2j])2 to both sides.
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9. (a) Find the Fourier series for the periodic function defined by
f (x) = ex, -ir < x < ir. Hint: Recall that sinh x = (e' -
e-'/2.

(b) Sketch the graph of the sum of this series on the interval
-5a < x < 5a.

(c) Use the series in (a) to establish the sums

rc
1 _ 1 ( n 1

j2 + 1 2 tanh7r

and

j=1

00 (-1)i
E

-
j2+1

1

2\siha1/.
10. Determine whether each of the following functions is even, odd, or

neither:

xs sin x , x2 sin 2x , ex , (sin x)3 , sin x2 ,

cos(x + x3) , x + x2 + x3 , in
1 + x
1-x

11. Show that any function f defined on a symmetrically placed in-
terval can be written as the sum of an even function and an odd
function. Hint: f (x) _ [f (x) + f (-x)] +'I [f (x) - f (-x)].

12. Find the Fourier series for the function of period 2ir defined by
f(x) = cosx/2, -7r < x < 7r. Sketch the graph of the sum of this
series on the interval -57r < x < 51r.

13. Find the Fourier series for the 27r-periodic function defined on its
fundamental period [-7r, ir] by

f(x)
x+2
-x+if0<x<7r

(a) by computing the Fourier coefficients directly;

(b) using the formula

rr 4 (CONS cos 3x cos 5xIxf=2- x+
32

+
52

+...

from the text.

Sketch the graph of the sum of this series (a triangular wave) on
the interval -57r < x< 57r.
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14. The functions sin2 x and cos' x are both even. Show, without using
any calculations, that the identities

sine x = 2 (1 - oos 2x) = 2 - 2 cos 2x

and

cost x= 2(1+cos2x)= 2+2cos2x

are actually the Fourier series expansions of these functions.

15. Prove the trigonometric identities

sin3 x = 4 sin x - 4 sin 3x and cos3 x =
3

x + 4 cos 3x

and show briefly, without calculation, that these are the Fourier
series expansions of the functions sin3 x and cos3 x.

16. Show that

L L °° 1 2 j7rx

2
- x = 7r sin 0<x<L.

17. Find the cosine series for the function defined on the interval 0 <
x < 1 by f(x) = x2 - x + 1/6. This is a special instance of the
Bernoulli polynomials.

Solve the following two exercises without worrying about conver-
gence of series or differentiability of functions.

* 18. If y = F(x) is an arbitrary function, then y = F(x+at) represents
a wave of fixed shape that moves to the left along the x-axis with
velocity a (Figure 12.9).

Similarly, if y = G(x) is another arbitrary function, then y =
G(x - at) is a wave moving to the right, and the most general
one-dimensional wave with velocity a is

y(x, t) = F(x + at) + G(x - at). (*)

(a) Show that (*) satisfies the wave equation.
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Y

at

y = F(x + at)
y = F(x)

r

Figure 12.9

x

(b) It is easy to see that the constant a in the wave equation has
the dimensions of velocity. Also, it is intuitively clear that
if a stretched string is disturbed, then the waves will move
in both directions away from the source of the disturbance.
These considerations suggest introducing the new variables
a = x + at, %3 = x - at. Show that with these independent
variables, equation (6) becomes

d2y

From this derive (*) by integration. Formula (*) is called
d'Alernbert's solution of the wave equation. It was also ob-
tained, slightly later and independently, by Euler.

19. Consider an infinite string stretched taut on the x-axis from -oc
to +oc. Let the string be drawn aside into a curve y = f (x) and
released, and assume that its subsequent. motion is described by
the wave equation.

(a) Use (*) in Exercise 18 to show that the string's displacement
is given by d'Alembert's formula

y(x, t) =
2

[f (x + at) + f (x - at)] . (**)

Hint: Remember the initial conditions (7) and (8).
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(b) Assume further that the string remains motionless at the
points x = 0 and x = r (such points are called nodes),
so that y(0, t) = y(r, t) = 0, and use (**) to show that f
is an odd function that is periodic with period 2r (that is,
f (-x) = f (x) and f (x + 27r) = f (x)).

(c) Show that since f is odd and periodic with period 2r then f
necessarily vanishes at 0 and r.

20. Solve the vibrating string problem in the text if the initial shape
y(x, 0) = f (x) is specified by the given function. In each case,
sketch the initial shape of the string on a set of axes.

(a)

(b)

(c)

AX) 2c(ir x)/7r if O/2 < x < r

AX) _ ix(r - x)

X if 0<x<r/4
AX) = r/4 if r/4 < x < 3r/4

r-xif 3r/4<x<r
21. Solve the vibrating string problem in the text if the initial shape

y(x, 0) = f (x) is that of a single arch of the sine curve f (x) =
c sin x. Show that the moving string always has the same general
shape, regardless of the value of c. Do the same for functions of
the form f (x) = c sin nx. Show in particular that there are n - 1
points between x = 0 and x = it at which the string remains
motionless; these points are called nodes, and these solutions are
called standing waves. Draw sketches to illustrate the movement
of the standing waves.

22. The problem of the struck string is that of solving the wave equa-
tion with the boundary conditions

y(O,t) = 0 , y(r,t) = 0

and the initial conditions

'Y I = g(x) and y(x,0) = 0.
at t=o

[These initial conditions reflect the fact that the string is initially
in the equilibrium position, and has an initial velocity g(x) at the
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point x as a result of being struck.] By separating variables and
proceeding formally, obtain the solution

y(x, t) = c3 sin ix sin jat ,
1-1

where

cl = 2

7rja
g(x) sin jx dx. .

23. Solve the boundary value problem

202w aw
a

8x2 St
w(x,0) = f(x)
w(0, t) = 0
ul(7r, t) = 0

if the last three conditions-the boundary conditions-are changed
to

w(x. 0) = f (x)
w(0. t) = w1

u,(7x, t) = w2.

Hint: Write w(x, t) = W (x, t) + g(x).

* 24. Suppose that the lateral surface of the thin rod that we analyzed
in the text is not insulated, but in fact radiates heat into the
surrounding air. If Newton's law of cooling (that a body cools
at a rate proportional to the difference of its temperature with
the temperature of the surrounding air) is assumed to apply, then
show that the 1-dimensional heat equation becomes

2
a2u,

&U,a
=

+ c(w - w0)
8x2 at

where c is a positive constant and wo is the temperature of the
surrounding air.

* 25. In Exercise 24, find w(x, t) if the ends of the rod are kept at 0°C.
wo = 0°C. and the initial temperature distribution on the rod is
f(x).

26. In the solution of the heat equation. suppose that the ends of the
rod are insulated instead of being kept fixed at 0°C. What are the
new boundary conditions? Find the temperature w(x, t) in this
case by using just common sense.
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27. Solve the problem of finding w(x, t) for the rod with insulated
ends at x = 0 and x = it (see the preceding exercise) if the initial
temperature distribution is given by w(x, 0) = f (x).

28. The 2-dimensional heat equation is

a2(82w 82W)_c?w
axe

+ aye /f .

Use the method of separation of variables to find a steady-state so-
lution of this equation in the infinite strip of the x-y plane bounded
by the lines x = 0, x = ir, and y = 0 if the following boundary
conditions are satisfied:

w(0, y) = 0 w(ir, y) = 0

w(x, 0) = f (x) lim w(x, y) = 0.
y-.+ao

29. Derive the 3-dimensional heat equation

2(82w i?w 8wl-8w
a

8x2 + Bye + 8z2 6t

by adapting the reasoning in the text to the case of a small box
with edges Ox, Ay, L. 1z contained in a region R in x-y-z space
where the temperature function w(x, y, z, t) is sought. Hint: Con-
sider the flow of heat through two opposite faces of the box, first
perpendicular to the x-axis, then perpendicular to the y-axis, and
finally perpendicular to the z-axis.

30. Solve the Dirichlet problem for the unit disc when the boundary
function f (8) is defined by

(a) f (0) = cos 0/2 , -7r < 8 < 7r

(b) f(O)=O , -7r<0<0
0 if-7r < 0 < 0(c) f(B) sin9if0<0<7r

(d) f(8)= f0if-Tr<8<0
l1if0<8<7r

(e) f (O) = 82/4 , -7r < 0 < it

31. Show that the Dirichlet problem for the disc {(x, y) : x2+y2 < R2},
where f (0) is the boundary function, has the solution

00

w(r, 8) = 2 ao + (R)? (a2 cos j8 + b, sin j8)
j-i
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*

*

where a3 and bj are the Fourier coefficients of f . Show also that
the Poisson integral formula for this more general disc setting is

1
R R2 r2

w(r, 0) =
27r , R2 - 2Rr cos(9 - 0) + r2

f (0) d¢ .

32. Let w be a harmonic function in a planar region, and let C be any
circle entirely contained (along with its interior) in this region.
Prove that the value of w at the center of C is the average of its
values on the circumference.

33. If w = F(x, y) = .F(r, 9), with x = r cos 9 and y = r sin 9, then
show that

a2w a2w 1 a ( aw 1 a2w
2-57X2+ y2 r {ar rar)+r aBl}

_ a2w 1 aw 1 a2w
art + r ar + r2 a92

.

Hint: We can calculate that
au,

cos 9+ay} sin O and a9 (-r sin 9)+ (r cos 9)
=TX

0 l 2

Similarly, compute 5 -FCr ! and ag2'
802-

34. It would be quite difficult to/ calculate the relevant integrals for
this problem by hand. Instead, use your symbol manipulation
software, such as Maple or Mathematica, to calculate the Poisson
integral of the given function on [-7r, 7r].

(a) f (9) = In2 9
(b) f (9) = 93 cos 9
(c) f (9) = ee sin 9

(d) f (9) = ee In 9

35. Calculate the Fourier transform of f(x) = x x o. u1

36. Calculate the Fourier transform of g(x) = cosx X[0,21-

37. If f, g are integrable functions on R then define their convolution
to he

Prove that

h(x) = f * g(x) = J f (x - t)g(t) dt.

* 38. Let f be a _function on R that vanishes outside a compact set.
Prove that f does not vanish outside any compact set.



Chapter 13

Functions of Several
Variables

13.1 Review of Linear Algebra
When we first learn linear algebra, the subject is difficult because it is
not usually presented in the context of applications. Now we will see
one of the most important applications of linear algebra: to provide a
language in which to do analysis of several real variables. We first give
a quick review of linear algebra.

The principal properties of a vector space are that it have an additive
structure and an operation of scalar multiplication. If u = (ul, u2, .... Uk)
and v = (vi, t)2,.. ., vk) are elements of Rk and a E R then define the
operations of addition and scalar multiplication as follows:

u + V = (ul + V1,u2 + V2:...,uk + Vk)

and

a u = (aul, au2, ... , auk) .

Notice that the vector 0 = (0, 0, ... , 0) is the additive identity: u+0 = u
for any element u E Rk. Also every element u = (ul, u2, ... , uk) E Rk
has an additive inverse -u = (-ul, -u2i ... , -Uk) that satisfies u +
(-u) = 0.

Example 13.1

We have

and

(3, -2, 7) + (4,1, -9) = (7, -1, -2)

5.(3,-2,7,14) = (15,-10,35,70). 0

The first major idea in linear algebra is that of linear dependence:

345
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Definition 13.1 A collection of elements u1, u2, ... , u"° E Rk is said
to be linearly dependent if there exist constants a1, a2, ...,am, not all
zero, such that

a., u-I = 0.
=1

Example 13.2

The vectors u = (1, 3, 4), v = (2, -1, -3), and w = (5, 1, -2)
are linearly dependent because 1 . u + 2 - v - 1 w = 0.

However, the vectors u' = (1, 0, 0), v' = (0,1,1), and w' _
(1, 0, 1) are not linearly dependent since if there were constants
a, b, c such that

au'+bv'+cw'=0
then

But this means that
(a + c, b, b + c) = 0.

a+c=0
b =0
b+c=0.

We conclude that a, b, c must all be equal to zero. That is not
allowed in the definition of linear dependence. 0

A collection of vectors that is not linearly dependent is called lin-
early independent. The vectors u'. v', w' in the last example are linearly
independent. Any set of k linearly independent vectors in Rk is called a
basis for Rk.

How do we recognize a basis'? Notice that k vectors

u1 = (U" 212,...,'1tk)
2 2 2 2

k k k' U
k

are linearly dependent if and only if there are numbers a1, a2, ... , ak,
not all zero, such that

This in turn is true if and only if the system of equations

a1ui+a2u +...+aku1' = 0
alu2 + a2u2 + ... + akuk = 0

0
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has a nontrivial solution. But such a system has a nontrivial solution if
and only if

f1 2Zli ui ... ui
det u2 U2

2 ... u2 = 0.

So a basis is a set of k vectors as above such that this determinant is
not 0.

Bases are important because if u', u2, ... , uk form a basis then every
element x of Rk can be expressed in one and only one way as

x= alui +a2 u2+...+akuk

with al, a2, ... , ak scalars. We call this a representation of x as a linear
combination of u1, u2, ... , uk. To see that such a representation is always
possible, and is unique, let x = (x1, xz, ... , xk) be any element of IIlk.If
ul , u2, ... , uk form a basis then we wish to find al, a2, ... , ak such that

But, as above, this leads to the system of equations

alui +a2u2 +...+akuk = xi
alu2+a2u2+ ..+akuk = X2

al uk + a2uk + ... + akuk = xk ,

(*)

(*)

Now Cramer's Rule tells us that the unique solution of the system
is given by

ai =

1 z kuk uk ... uk

a2 =

ui XI ... ui
det u2 x2 ...u2

(Uk xk ... uk
fui ui ...ui
u2 u2 ...4det

1 2 kuk uk ... uk
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(let u2 Tc2
....r2

\ itk u2 ... xk /ak =
rl l .u.2 ... u k

(let 2 2 2

9bk uk ... ilk

Notice that the nonvanishing of the determinant in the denominator is
crucial for this method to work.

In practice we will be given a basis u1, u2, ... , uk for ]Rk and a vector
x and we wish to express x as a linear combination of u1, u2, ... , uk.
We may do so by solving a system of linear equations as above. A more
elegant way to do this is to use the concept of the inverse of a matrix.

Definition 13.2 If

M = (mpg) p=l.....k
q=1.....f

is a k x f matrix (where k is the number of rows, f the number of columns,
and rn.1,g is the element in the the pth row and qth column) and

N = (1trN) r=1.....f.
s=1....,m

is an f x in matrix then the product M N is defined to be the matrix

T = (tuv) u=1,....k
q=l,...,m

where

Example 13.3

Let

and

t

tuv = E rltuq rlgi.

q=1

2 3 9
A1

I-1 4 0
5-3 6
4 4 1

f-3 0
N= 2 5

-4 -1
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Then T = M N is well defined as a 4 x 2 matrix. We notice,
for example, that

and

Six other easy calculations of this kind yield that

I-36 6

M N 11 20
-45 -21
-8 19

0

Definition 13.3 Let M be a k x k matrix. A matrix N is called the
inverse where

1 0 ... 0

1= 0 1 ... 0

0 0 1

When M has an inverse then it is called invertible.

It follows immediately from the definition that, in order for a matrix
to be a candidate for being invertible, it must be square.

Proposition 13.1
Let M be a k x k matrix with nonzero determinant. Then M is invertible

and the elements of its inverse are given by

(-1)2+) . det M(i, j)
n,,

det M

Here M(i, j) is the (k - 1) x (k - 1) matrix obtained by deleting the jth

row and ith column from M.

Proof: This is a direct calculation that we leave to the exercises.

Definition 13.4 If M is either a matrix or a vector, then the trans-
pose tM of M is defined as follows: If the ijth entry M is mt? then the
ijth entry of tM is m_,
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We will find the transpose notion useful primarily as notation. When
we want to multiply a vector by a matrix, the multiplication will only
make sense (in the language of matrix multiplication) after we have
transposed the vector.

Proposition 13.2
If

t t

2 2 2 2U = (Ul, il2, ... , uk)

Uk = (u , u2, ... , uk)

form a basis for Rk then let Al be the matrix of the coefficients of these
vectors and M-t the inverse of M (which we know exists because the
determinant of the matrix is nonzero). If x = (xl, x2i ... , xk) is any
element of Rk then

x=al

where
(al, a2, ... , ak) = x AI-l .

Proof: Let A be the vector of unknown coefficients (al, a2, .... ak). The
system of equations that we need to solve to find al, a2, ... , ak can be
written in matrix notation as

l =x.

Applying the matrix AI
gives

to both sides of this equation (on the right)

or

or

as desired.

The standard basis for Rk consists of the vectors

el = (1,0.....0)
e2 = (0,1,...,0)

A A

(*)

ek - (0.0, ...1)
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If x = (XI, x2, ... , xk) is any element of Rk, then we may write

x= xle1+x2

In other words, the usual coordinates with which we locate points in lo-
dimensional space are the coordinates with respect to the special basis
(*). We write this basis as e1, e2,. .., ek.

If x = (x1, x2, ... , xk) and y = (y1, y2, ... , yk) are elements of Rk
then we define

llxll = V/(XI)2 + (x2)2 + ... + (xk)2

and
=xly1 +x2y2+...+xkyk

Proposition 13.3 [The Schwarz Inequality]
If x and y are elements of Rk then

Ix YI -5- 11X11

Proof: Write out both sides and square. If all terms are moved to the
right then the right side becomes a sum of perfect squares and the in-
equality is obvious. Details are requested of you in an Exercise. 0

Corollary 13.1
Let M be any k x k matrix. Then there is a constant C > 0 such that,

for any x E Rk, we have

IIM(`x)ll <_ Cllxll

Proof: The first entry of Mix is M1 x, where 1411 is the first row of M.
Likewise the second entry of MIx is M2 x, the third entry of Mix is
M3 x, and so forth. The result now follows from the Schwarz Inequality,
with

C =max{IlMlll,l1M2ll,..., IlMkll}. 0

13.2 A New Look at the Basic Concepts of
Analysis

A point of Rk is denoted (X1, x2, ..., xk). In the analysis of functions of
one real variable, the domain of a function is typically an open interval.
Since any open set in R' is the disjoint union of open intervals, it is
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natural to work in the context of intervals. Such a simple situation does
not obtain in the analysis of several variables. We will need some new
notation and concepts in order to study functions in Rk:

We measure distance between two points s = (sl,s2,...,s,) and

t = (t1, t2, ..., tk) in Rk by the formula

Its - tll = (81 - tl)2 + (32 - t2)2 +..-+ (Sk - tk)2 .

Of course this notion of distance can be justified by considerations using
the Pythagorean theorem (see the exercises), but we treat this as a
definition. The distance between two points is nonnegative, and equals
zero if and only if the two points are identical. Moreover, there is a
triangle inequality:

Its - til < Ils - ull+ilu - til.

We sketch a proof of this inequality in the exercises (by reducing it to
the one dimensional triangle inequality).

Definition 13.5 If x E Rk and r > 0 then the open ball with center
x and radius r is the set

B(x,r) _ It E Rk : llx - tll < r}.

The closed ball with center x and radius r is the set

B(x, r) = it E Rk : lit - xll < r}.

Definition 13.6 A set U C Rk is said to be open if for each x E U
there is an r > 0 such that the ball B(x, r) is contained in U.

Example 13.4

Let
S = {X = (xl, x2, x3) E R3 : 1 < IIxII < 2).

This set is open. For if x E S, let r = min{iixii - 1,2 - iixii}.
Then B(x, r) is contained in S for the following reason: if t E
B(x, r) then

Ilxii 5 lit - xll + iltli
hence

Iltll? IIxII - Ilt - xll> IIxII-r>Ilxll-(iixii-1)=1.
Likewise,

11tll <- Ilxil + lit - xll < IIxII + r < lixil + (2 - IIxII) = 2.
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It follows that t E S hence B(x, r) C S. We conclude that S is
open.

However, a moment's thought shows that S could not be
written as a disjoint union of open balls, or open cubes, or any
other regular type of open set.

In this chapter we consider functions with domain a set (usually
open) in Rk. This means that the function f may be written in the form
A XI, x2, ... , xk). An example of such a function is A X1, x2, x3, x4) _
X1 (x2)4 - X31 X4 or 9(x1, x2, x3) = (x3)2 . sin(x1 x2 x3).

Definition 13.7 Let E C Rk be a set and let f be a real-valued
function with domain E. Fix a point P E E. We say that

urn f(x) Q,

with f a real number, if for each e > 0 there is a b > 0 such that when
xEEandO<IIx-PII<6then

If (x) - I < e.

Compare this definition with the definition in Section 6.1: the only
difference is that we now measure the distance between points of the
domain off using II II instead of I I.

Example 13.5

The function
x1x2

x2 + x2 + x2 if (xl, x2, x3) 34 0
AX l, x2, x3) = 1 2 3

0 if (x1, x2, x3) = 0

has no limit as x - 0. For if we take x = (t, 0, 0) then we obtain
the limit

li mf(t,0,0)=0

while if we take x = (t, t, t) then we obtain the limit

imf(t,t,t)

Thus fore < s = z 3 there will exist no S satisfying the
definition of limit.

However, the function

9(x1, x2, x3, x4) = xi + x2 + x3 + x2
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satisfies

lima g(x) = 0

because, given E > 0, we take 5 = E/4. Then lix - 011 < 5
implies that I xj - 01 < E/4 for j = 1,2,3,4 hence

()2+
Ig(xl,x2,x3,x4) -0I <

()2+
( )2+

(/)2
= E.

0

Notice that, just as in the theory of one variable, the limit properties
of f at a point P are independent of the actual value of f at P.

Definition 13.8 Let f be a function with domain E C RI and let
P E E. We say that f is continuous at P if

li P f (x) = f (P)

The limiting process respects the elementary arithmetic operations,
just as in the one-variable situation explored in Chapter 6. We will treat
these matters in the exercises. Similarly, continuous functions are closed
under the arithmetic operations (provided that we do not divide by zero).
Next we turn to the more interesting properties of the derivative.

Definition 13.9 Let f (x) be a function whose domain contains a
ball B(P, r). We say that f is differentiable at P if there is a 1 x k
matrix Alp = Mp(f) such that, for all h E Rk satisfying IIhil < r, it
holds that

where
111I1Rp(f,h)=0.

h-.0 IIhII

The matrix Alp = Mp(f) is called the derivative of f at P.

The best way to begin to understand any new idea is to reduce it to
a situation that we already understand. If f is a function of one variable
that is differentiable at P E R then there is a number Al such that

lim
f(P+h)-f(P) -M.h-0 h

We may rearrange this equality as

f(P+h)-f(P)-AISp,
h
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where Sp - 0 as h 0. But this may be rewritten as

f (P + h) = f (P) + M h + Rp(f, h), (*)

where Rp = h Sp and

lim Rp(f, h) = 0.
h-.O h

Equation (*) is parallel to the equation in Definition 13.9 that defines
the concept of derivative. The role of the 1 x k matrix Mp is played by
the numerical constant M. But a numerical constant is a 1 x 1 matrix.
Thus our equation in one variable is a special case of the equation in k
variables. In one variable, the matrix representing the derivative is just
the singleton consisting of the numerical derivative.

Note in passing that (in the one-variable case) the way that we now
define the derivative of a function of several variables is closely related
to the Taylor expansion. The number M is the coefficient of the first
order term in that expansion, which we know from Chapter 10 to be the
first derivative.

What is the significance of the matrix Mp in our definition of deriva-
tive for a function of k real variables? Suppose that f is differentiable ac-
cording to the definition above. Let us attempt to calculate the "partial
derivative" (as in calculus) with respect to xl of f. Let h = (h, 0, ... , 0).
Then

h
0

f(Pi +h,P2i...,Pk) = f(P)+Mp . +Rp(f,h)
0

Rearranging this equation we have

f (Pi + h, P2i ... , Pk) - f (P)
= (M.),+Sph ,

where Sp --+ 0 as h -* 0 and (Mp)1 is the first entry of the 1 x k matrix
Mp.

But, letting h --> 0 in this last equation, we see that the partial
derivative with respect to xl of the function f exists at P and equals
(Mp)l. A similar calculation shows that the partial derivative with
respect to x2 of the function f exists at P and equals (Mp)2; likewise
the partial derivative with respect to x3 of the function f exists at P
and equals (Mp), for j = 1, ..., k.

We summarize with a theorem:
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Theorem 13.1
Let f be a function defined on an open ball B(P, r) and suppose that
f is differentiable at P with derivative the 1 x k matrix Mp. Then the
first partial derivatives of f at P exist and they are, respectively, the
entries of Mp. That is,

(M)1 = - -f (P) , (AMP)2 = 2f(P) , ... , (Mp)k = aakf(P)

Unfortunately the converse of this theorem is not true: it is possible
for the partial derivatives off to exist at a single point P without f being
differentiable at P in the sense of Definition 13.9. Counterexamples will
be explored in the exercises. On the other hand, the two different notions
of continuous differentiablity are the same. We formalize this statement
with a Propsition:

Proposition 13.4
Let f be a function defined on an open ball B(P, r) Assume that f

is differentiable on B(P, r) in the sense of Definition 13.9 and that the
function

x111.
is continuous in the sense that each of the functions

x'-' (Mx).1

is continuous, j = 1, 2, ... , k. Then each of the partial derivatives

a a
a-,f(x)

exists for x E B(P, r) and is continuous.
Conversely, if each of the partial derivatives exists on B(P, r) and

is continuous there then M, exists at each point x E B(P, r) and is
continuous. The entries of My are given by the partial derivatives of f.

Proof: This is essentially a routine check of definitions. The only place
where the continuity is used is in proving the converse: that the exis-
tence and continuity of the partial derivatives implies the existence of
M. In proving the converse you should apply the one-variable Taylor
expansion to the function t '--* f (x + th).

13.3 Properties of the Derivative
The arithmetic properties of the derivative-that is the sum and differ-
ence, scalar multiplication, product, and quotient rules-are straight-
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forward and are left to the exercises for you to consider. However, the
Chain Rule takes on a different form and requires careful consideration.

In order to treat meaningful instances of the Chain Rule, we must
first discuss vector-valued functions. That is, we consider functions with
domain a subset of Rk and range either R' or R2 or R' for some integer
m > 0. When we consider vector-valued functions, it simplifies notation
if we consider all vectors to be column vectors. This convention will be
in effect for the rest of the Chapter. (Thus we will no longer use the
"transpose" notation.) Note in passing that the expression lixjj means
the same thing for a column vector as it does for a row vector-the
square root of the sum of the squares of the components. Also f (x)
means the same thing whether x is written as a row vector or a column
vector.

Example 13.6

Define the function

f(X1, x2, x3)
((xl)2_x2.x3)

x1 - (x2)3

This is a function with domain consisting of all triples of real
numbers, or R3, and range consisting of all pairs of real numbers,
or R2. For example,

f(-1,2,4) _ (-8) . O

We say that a vector-valued function of k variables

AX) = (f1 (X), MX), ... , fm(X))

(where m is a positive integer) is differentiable at a point P if each of
its component functions is differentiable in the sense of Section 2. For
example, the function

f(xl, x2, x3)
(X1 -X2

x3)2 )
is differentiable at all points while the function

9(x1, x2, x3) = X2

x31-X1

is not differentiable at points of the form (x1, x2, 0).
It is a good exercise in matrix algebra (which you will be asked to

do at the end of the chapter) to verify that a vector-valued function f is
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differentiable at a point P if and only if there is an m x k matrix (where
k is the dimension of the domain and m the dimension of the range)
Mp(f) such that

f (P + h) = f (P) + Mbfp(f)h + lZp(f, h)

here the remainder term lZp is a column vector satisfying

IIRp(f,h)11 -ten
Ilh1l

as h -+ 0. One nice consequence of this formula is that, by what we
learned in the last section about partial derivatives, the entry in the ith
row and jth column of the matrix M is 8f;/(9x3.

Of course the Chain Rule provides a method for differentiating com-
positions of functions. What we will discover in this section is that the
device of thinking of the derivative as a matrix occuring in an expansion
of f about a point a makes the Chain Rule a very natural and easy
result to derive. It will also prove to be a useful way of keeping track of
information.

Theorem 13.2
Let .9 be a function of k real variable taking values in R' and let f be a

function of m real variables taking values in R". Suppose that the range
of g is contained in the domain of f, so that f o g makes sense. If g is
differentiable at a point P in its domain and f is differentiable at g(P)
then f o g is differentiable at P and its derivative is M9(p) (f) Mp(g).
We use the symbol here to denote matrix multiplication.

Proof: By the hypothesis about the differentiability of g,

(f o g)(P + h) = f (g(P + h))
= f (9(P) + Mp(9)h + Rp(g, h))
= f (9(P) + k) , (*)

where
k = Mp(9)h + Rp(9, h)

But then the differentiability of f at g(P) implies that (*) equals

f(9(P)) + M9(p)(f)k +R9(p)(f, k) .

Now let us substitute in the value of k. We find that
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(f 0 g)(P + h) = f(g(P)) + Mg(p)(f)[Mp (g)h + Rp(g, h)]
+Rg(p) (f, Mp (g)h + Rp (g, h))

= f(g(P)) + Mg(p)(f)Mp(g)h
+ {M9(p)(f)Rp(g,h)
+ Rg(p)(f, Mp(g)h + Rp(g, h))}

f (g(P)) + Mg(p) (f )Mp (g)h
+Qp(f og,h),

where the last equality defines Q. The term Q should be thought of as
a remainder term. Since

IIRp(g, h)II 0
IIhII

as h -+ 0 it follows that

Mg(p) (f )Rp (g, h) _' 0.
IIhII

(Details of this assertion are requested of you in the exercises.) Similarly,

Rg(p)(f, Mp(g)h + Rp(g, h))
0

IIhII

as
It follows that f o g is differentiable at P and that the derivative

equals Mg(p) (f )Mp(g), the product of the derivatives off and g. 0

REMARK 18.1 Notice that, by our hypotheses, Mp(g) is a m x k
size matrix and M9(p) (f) is an n x m size matrix. Thus their product
makes sense.

In general, if g is a function from a subset of R' to R" then, if we
want f o g to make sense, f must be a function from a subset of RI to
some R". In other words, the dimension of the range of g had better
match the dimension of the domain of f. Then the derivative of g at
some point P will be an m x k matrix and the derivative off at g(P) will
be an n x m matrix. Then the matrix multiplication Mg(p) (f )Mp (g)
will make sense.

I

Corollary 13.2 [The Chain Rule in Coordinates]
Let f : R'" --+ R" and g : R'c R"` be vector-valued functions and
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assume that h = fog makes sense. If g is differentiable at a point P of
its domain and f is differentiable at g(P) then for each i and j we have

aht
(P)

of
(9(P))

9t
(P)axj

e_1
ast axj

Proof: The function ah1/xj is the entry of Mp(h) in the ith row and
jth column. However, Mp(h) is the product of A19(p)(f) with Mp(g).
The entry in the ith row and jth column of that product is

agi
ase

(9(P)) ' axj(P)-

We conclude this section by deriving a Taylor expansion for scalar-
valued functions of k real variables: this expansion for functions of sev-
eral variables is derived in an interesting way from the expansion for
functions of one variable. We say that a function f of several real vari-
ables is k times continuously differentiable if all partial derivatives of
orders up to and including k exist and are continuous on the domain of
f.

Theorem 13.3 [Taylor's Expansion]
For q a nonnegative integer let f be a q + 1 times continuously dif-
ferentiable scalar-valued function on a neighborhood of a closed ball
B(P, r) C Rk. Then, for x E B(P, r),

f(x)

X2 -
ax

,qji

?'axj2 (P)
(X1

- Pl)'(j )!(j2)!

Pk)'k

1 2 k l

+9Zq,P (x),

where

and

IRq,p(x)I <- CO .
IIx - ppg+1

(q + 1)!

CO = sup
SED(P.r)

ll +12+''+tk =q+1

Proof: With P and x fixed, define

r
IIx - PII'

`1.)1 +)2+"'+jk /

ax;' ax22 ... axkk (4 )

*'(s) = f (P + Q(x _'P)) 0 < s <
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We apply the one-dimensional Taylor theorem to the function F,
expanded about the point 0:

.F(s) = q.F(t)(0) e' + RQ,o(.F, s).
t=o

Now the Chain Rule shows that

.FM (0) =

a
`9J f

j1+.72+..+jk=t
0x310xi2 ... ax3k

(31)!U2). (7k)!
(XI - Pi ),i1 (x2 - P2)32 ... (xk - Pk)3k .

Substituting this last equation, for each t, into the formula for.F(s) and
setting s = 1 (recall that r/Ilx - P11 > 1 since x E B(P, r)) yields the
desired expression for f (x). It remains to estimate the remainder term.

The one-variable Taylor theorem tells us that, for s > 0,

dQIRq,o(F, s)I = I I F( +I)(o.) (s
qua)a

4

'o
l1x-P119+i,1(s-v) Ida

9t

Ilx - P11Q+1
(q + 1)!

Here we have of course used the Chain Rule to pass from derivatives of
.F to derivatives of f. This is the desired result. 0

13.4 The Inverse and Implicit Function Theorems
It is easy to tell whether a continuous function of one real variable is
invertible. If the function is strictly monotone increasing or strictly
monotone decreasing on an interval then the restriction of the function
to that interval is invertible. The converse is true as well. It is more
difficult to tell whether a function of several variables, when restricted
to a neighborhood of a point, is invertible. The reason, of course, is that
such a function will in general have different monotonicity behavior in
different directions.

However, if we look at the one-variable situation in a new way it can
be used to give us an idea for analyzing functions of several variables.
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ly

Figure 13.1

Suppose that f is continuously differentiable on an open interval I and
that P E I. If f'(P) > 0 then the continuity of f' tells us that, for
x near P, f'(x) > 0. Thus f is strictly monotone increasing on some
(possibly smaller) open interval J centered at P. Such a function, when
restricted to J, is an invertible function. The same analysis applies when
f'(P) < 0.

Now the hypothesis that f'(P) > 0 or f'(P) < 0 has an important
geometric interpretation-the positivity of f'(P) means that the tangent
line to the graph of f at P has positive slope, hence that the tangent
line is the graph of an invertible function (Figure 13.1); likewise the
negativity of f'(P) means that the tangent line to the graph of f at
P has negative slope, hence that the tangent line is the graph of an
invertible function (Figure 13.2). Since the tangent line is a very close
approximation at P to the graph of f, our geometric intuition suggests
that the local invertibility of f is closely linked to the invertibility of the
function describing the tangent line. This guess is in fact borne out in
the discussion in the last paragraph.

We would like to carry out an analysis of this kind for a function f
from a subset of Rk into R't. If P is in the domain of f and if a certain
derivative of f at P (to be discussed below) does not vanish, then we
would like to conclude that there is a neighborhood U of P such that
the restriction of f to U is invertible. That is the content of the Inverse
Function Theorem.
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Figure 13.2

Before we formulate and prove this important theorem, we first dis-
cuss the kind of derivative of f at P that we shall need to examine.

Definition 13.10 Let f be a differentiable function from an open
subset U of Rk into Rk. The Jacobian matrix of f at a point P E U is
the matrix

a (p) i(p) ...TZ.(p)
Jf(P) _ (p) (p) ...(p)

(p) a (p) ... (p)OXI

Notice that if we were to expand the function f in a Taylor se-
ries about P (this would be in fact a k-tuple of expansions, since f =
(fl, ff, ... , fk)) then the expansion would be

f(P + h) = f(P) + Jf(P)h+ ... .
Thus the Jacobian matrix is a natural object to study. Moreover we
see that the expression f (P + h) - f (P) is well approximated by the
expression Jf(P)h. Thus, in analogy with one-variable analysis, we
might expect that the invertibility of the matrix J f (P) would imply the
existence of a neighborhood of P on which the function f is invertible.
This is indeed the case:
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Theorem 13.4 [The Inverse Function Theorem]
Let f be a continuously differentiable function from an open set U C_ Rk
into Rk. Suppose that P E U and that the matrix J f (P) is invertible.
Then there is a neighborhood V of P such that the restriction of f to
V is invertible.

Proof: The proof of the theorem as stated is rather difficult. Therefore
we shall content ourselves with the proof of a special case: we shall
make the additional hypothesis that the function f is twice continuously
differentiable in a neighborhood of P.

Choose s > 0 such that B(P, s) C U and so that (let J f (x) 54 0 for
all x E B(P. s). Thus the Jacobian matrix Jf(x) is invertible for all
x E B(P, s). With the extra hypothesis, Taylor's theorem tells us that
there is a constant C such that if Ilhll < s/2 then

f (Q + h) - f (Q) = Jf (Q)h + R1.Q(f, h) , (*)

where

and

I1Z1.Q(h)I <_ C C. II

2+12

C = sup
tE n(Q,r)

jl +j7+'''+jk-2

601 +J2+...+.;k f

axi` axe' ... axjk

However, all the derivatives in the sum specifying C are, by hypothesis,
continuous functions. Since all the balls B(Q, s/2) are contained in the
compact subset B(P, s) of U it follows that we may choose C to be a
finite number independent of Q.

Now the matrix Jf(Q)-1 exists by hypothesis. The coefficients of
this matrix will be continuous functions of Q because those of Jf are.
Thus these coefficients will be bounded above on B(P, s). By Corollary
13.1, there is a constant K > 0 independent of Q such that for every
k E Rk we have

IIJf(Q)-'kll < Kllkll

Taking k = J f (Q) h yields

Ilhll < KI]Jf(Q)h[[.

Now set
r = min{s/2, 1/(KC)}.

Line (*) tells us that, for Q E B(P, r) and Ilhll < r,

11f (Q + h) - f(Q)II ? IIJf(Q)hII - II1Z1,Q(h)II
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But estimate (**), together with our estimate from above on the error
term R, yields that the right side of this equation is

,11KII-2IIhII2

The choice of r tells us that IIh11 < 1/(KC) hence the last line majorities
(K/2)IIhII

But this tells us that, for any Q E B(P, r) and any h satisfying
IIhII < r, it holds that f(Q + h) # f(Q). In particular, the function f
is one-to-one when restricted to the ball B(P, r/2). Thus fIB(P,a/2) is
invertible.

In fact the estimate

11f (Q + h) - f(Q)II >-
2

IIhII

that we derived easily implies that the image of every B(Q, s) contains
an open ball B(f(Q), a'), some s' > 0. This means that f is an open
mapping. You will be asked in the Exercises to provide details of this
assertion.

With some additional effort it can be shown that f -1 is continuously
differentiable in a neighborhood of f (P). However, the details of this
matter are beyond the scope of this book. We refer the interested reader
to [RUD1].

Next we turn to the Implicit Function Theorem. This result ad-
dresses the question of when we can solve an equation

f(xl, x2, ... , xk) = 0

for one of the variables in terms of the other (k - 1). It is illustrative to
first consider a simple example. Look at the equation

f(xl,x2) = (x1)2 + (x2)2 = 1.

We may restrict attention to -1 < xl < 1, -1 < x2 < 1. As a glance
at the graph shows, we can solve this equation for x2i uniquely in terms
of xl, in a neighborhood of any point except for the points (+1, 0). At
these two exceptional points it is impossible to avoid the ambiguity in the
square root process, even by restricting to a very small neighborhood.
At other points, we may write

t2 = 1 - (tl )2

for points (tl, t2) near (x1, x2) when x2 > 0 and

t2=- 1-(t1)2
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Figure 13.3

vertical slope so
cannot solve for
x2 in terms of x 1 .

for points (t1, t2) near (x1, x2) when x2 < 0.
What distinguishes the two exceptional points from the others is

that the tangent line to the locus (a circle) is vertical at each of these
points. Another way of saying this is that

of=0
x2

at these points (Figure 13.3). These preliminary considerations motivate
the following theorem.

Theorem 13.5 [The Implicit Function Theorem]
Let f be a function of k real variables, taking scalar values, whose domain
contains a neighborhood of a point P. Assume that f is continuously
differentiable and that f(P) = 0. If (af/axk)(P) # 0 then there are
numbers 6 > 0, 71 > 0 such that if 1x1 - P1 I < 6, Ix2 - P21 < 6, ... ,
Ixk-1 - Pk-1I < 6 then there is a unique xk with Ixk - PkI < 7,1 and

f(x1,x2,...,xk) = 0. (*)

In other words, in a neighborhood of P, the equation (*) uniquely de-
termines Xk in terms of x1, x2, ... , xk-1.
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Proof: We consider the function

T : (xi) x2,...,xk)'-' (xl,x2,...,xk-1,f(xl,x2) ...,xk))
The Jacobian matrix of T at P is

/ 1 0 .. 0

(P) a
051 85k

Of course the determinant of this matrix is 8 f /8xk (P), which we hy-
pothesized to be nonzero. Thus the Inverse Function Theorem ap-
plies to T. We conclude that T is invertible in a neighborhood of P.
That is, there is a number ri > 0 and a neighborhood W of the point
(PI, P2,. . ., Pk_ 1, 0) such that

T : B(P, 77) H W

is a one-to-one, onto, continuously differentiable function which is in-
vertible. Select 5 > 0 such that if I xi - P1 I < 5, I X2 - P2I < 6, ... ,
Ixk-1 - Pk-1I < 6 then the point (XI, X2, ..., xk_i, 0) E W. Such a
point (x1, x2, ... , xk-1, 0) then has a unique inverse image under T that
lies in B(P, ii). But this just says that there is a unique xk such that
f (X1, x2i ..., xk) = 0. We have established the existence of 6 and 77 as
required, hence the proof is complete.

13.5 Differential Forms
You know that, when you formulate the fundamental theorem of calculus
on an interval [a, b], it is important to orient the interval correctly. The
correct statement is

jb

f' (x) dx = f (b) - f (a) ,

not

o 1 ... 0

o 1 0

j
b

f'(x)dx = f(a) - f(b)

Stokes's theorem is a higher-dimensional version of the Fundamental
Theorem of Calculus. Its formulation also requires suitable orientation
of the domain and of its boundary.

The question of orienting higher-dimensional integrals is tricky and
subtle. The language of differential forms was invented by Elie Cartan
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(1869°1951) in order to make the process more natural. In the present
section we shall give a brief and ad hoc description of this theory. A
fully rigorous treatment of differential forms requires some rather so-
phisticated and nontrivial algebra (see [LOS] or [FED]). In order to
avoid those technicalities, we shall indulge in a bit of imprecision.

13.5.1 The Idea of a Differential Form

A k-dimensional differential form on Rk is an expression of the form
dxl A dx2 A . A dxk. This is a device for integration. The connectives
A are used to pin down the ordering of the differentials dx,. If f is a
bounded, continuous function on a bounded open set U then we define

ff(x)dxi A dx2 A ...Adxk = J f (x) dx 1dx2 ... dxk .
U

What is the point? It appears that we are defining new notation for
something old that we already understand.

But dx1 Adx2 A . . Adxk is an oriented object in the following sense:
If a is a permutation of the set {1, 2,..., k} then we define

dx,(,)Adxa(2)A.-.Adxa(k) = (-1)E(a)dx1 Adx2A...Adxk. (*)

Here e(a) is the signature (or parity) of the permutation a-i.e., the
number of transpositions that make up a. Recall that the panty of f (a)
is an invariant of a. More generally, if

dx3, A dx32 A ... A dxi,,,

is a differential form and p is a permutation of {1. 2, ... , -in} then

dxJµ(,) A A ... A dxk,.(m, = (-1)E(1')dx.,, A dxss A ... A dx,m

Note that it follows from (*) that if a differential form

dx,, Adx,2A---Adx2m

has i., = it for some j 54 e then the form is identically equal to 0.
This is just a notational way of saying that we must integrate in all
possible directions-we do not allow redundancies. [This observation is
trivial in the present context. It will assume greater significance when
we integrate over surfaces.]

Example 13.7
Calculate

fff xeZ1-z2dzAdyAdx.
[0.1]x[0,1[x)0,1]
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SOLUTION First observe that

Therefore

dz A dy A dx = (-1)dyAdz Adx
= (-1) (-1)dyAdxAdz
_ (-1) - (-1) (-1)dx A dy A dz
_ -dxAdyAdz.

111
xey-z2dyAdzAdx

10.1] x[0,11 x(0,1]

fff xe1'-z2dxAdyAdz
(0, 1)x(0,1]x[0,1)

If'
(0,1Ix[0,1]x(0,1]

xey - z2 dxdydz.

Of course this last integral is easily evaluated to equal 5/6 - e/2. 0

13.5.2 Differential Forms on a Surface

In order to be concrete, let us restrict attention to domains and surfaces
in Rk. Thus the coordinates will be either x1, x2, x3, ... , xk or sometimes
(in low dimensions) just x, y, z. A (k -1)-dimensional surface in Rk will
be given by a parametric map

(81, 8//2, ... , 8k-1) -- (W1(81, 82, ... , 8k-1),

p2181,82,...,8k-1),...,Wk(81,82,...,8k-1))

The geometric surface is just the image of this map. We require that
the functions cpj be continuously differentiable, j = 1, ..., k. In order to
avoid degeneracies (i.e., singularities in the surface), we require that the
matrix

8 1 81,89,...,ak-1 8'02(81,82,-..,ek-1)
0bi 8a1

81,82,.8 9 ,a ,2
B 82J

8 i,82:....8k-1 8'p2(81,82,...,ak-1)
8Ik_1 Oak-1

8 k 81,89 ... ak-1
92

8'Ok (81,82,...,$k-1)
88k_1
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y

X

Figure 13.4

have rank (k - 1) at every point. In other words, we require that the
vectors

rawl (51,32,...,sk-1) 09'P2(51,32,...,sk-1) 0gk(51,S2,...,sk-1)
as, '

/

as, ,...,
881

(OO1(S1,S2,...ISk-1) 8 (s1,s2,...,sk-1) a^(81,32,...,sk-1)
as a$

, ... ,
0822 2

Ca 1(81,S2,...,3k-1) 01P2(81,s2,...,sk-1) aVk(sl) s2,...,sk-1)
ask-1 I 04k-1

,...,
ask-1

be linearly independent for each fixed value of sl, s2, .. , Sk-1.

Example 13.8
Consider the surface S parametrized by

$ : (s, t) ,-i (s, t, 4 - s2 - t2)

for (s, t) E U = {(s, t) : s2 + t2 < 4}. Observe that

J4i - 1 1
0 -s1--,f4-S2-t2)

\\ 0 1 -t/ 4 - s2 - t2

has rank 2 at every point. Of course this surface is a hemisphere,
as shown in Figure 13.4.

The surface in Example 13.8 is the graph of a function. There is
little loss of generality to restrict attention to such surfaces; any smooth
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surface can be broken up into finitely many pieces, each of which (after
a suitable rotation and translation of coordinates) is the graph of a
function.

Now our aim is to integrate differential forms over surfaces. Recall
that, on Euclidean space R", we integrate an n-form dxi, A dx,, A - - - A

dx,,,. Here the term "n-form" simply indicates the fact that the form
has n differentials in it. On a 2-dimensional surface we shall integrate a
2-form. On a 3-dimensional surface we shall integrate a 3-form. And on
a (k - 1)-dimensional surface we integrate a (k - 1)-form. Here is how
we do it for a 2-dimensional surface in 3-space. [The case of a (k - 1)-
dimensional surface in k-space is similar, but notationally much more
forbidding. For our present purposes, the lower-dimensional case will
suffice.]

Let
: (8, t) '-' 601(8, t), ,o2(8, t), 403(8, t)) -

be a parametrized surface as usual. Let us consider a bounded, open set
U C R2 to be the domain of the parametrization. Denote the surface
by S. Let A = dxi, A dx,, be a differential form. We define

is A =
is dxi, A dxi,

s s

= f (pd8+dt)A (2+

= fu 88
8t da dt) +

8t 8s
dt da

= f i.- 49yi - 8ws, . - --1 ds A dtt as at at es J

Example 13.9

Recall the hemispherical surface S from Example 13.8. Let V =
{(s, t) : s2 + t2 < 4, t > 0}. Define the form A = dx A dz =
dx1 A dx3. Then

0(P38401 8403 8401if A - ff 8s 8t
-

at
8s, ds n dt

s v

f=ff [l t -0 s

J

dsAdt
LL 4- -t 4- -t l

v

t dsdt.4-8 -t
v

This is now a straightforward calculus problem, and the answer
is -27f. 0
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13.5.3 General Differential Forms and Stokes's Theorem

In general, it is desirable to integrate a more general type of differential
form. Namely, on a 2-dimensional surface S we will consider a differential
form having the form

A=Y/11(x,y,z)dxndy+i2(x,y,z)dxAdz+7/13(x,y,z)dyAdz.

Two things are new here: (i) We allow the coefficient functions Y'1, V;2,03,
which are assumed to be continuously differentiable but are otherwise
arbitrary; (ii) We now consider linear combinations of the simple forms
dx,, A dx;,. Following the paradigm set before, we define (for S a two
dimensional surface as usual, parametrized over a planar set U by a
mapping 4) = (V1, W2, G3))

Is = J J o -t (s, t)] (!ds+ 1 dt I A (ds+ dtl
J

U

+[[-tp2o4)(s,t)1(!d+1dt)A(ds+dt)J

+ [Lso4)(st)1 (ds+ edt) A (ds+dt)]
Now the tool that makes differential forms powerful is the exterior

derivative. If

A=zb1(x,y,z)dxndy+ 02(x,y,z)dxAdz+z/,3(x,y,z)dyAdz.

then we set
1

dA= xdxAdxAdy+ 1 dyAdxAdy+ zl dzAdxAdyJ

+ I-x2 dxAdxAdz+2 dyAdxAdz+ z2 dzAdxAdz}
05 ay

+I -3dxAdyAdz+ edyAdyAdz+JPdzAdyAdz]

Of course whenever there is a repeated differential then the form reduces
to 0. So we have

dA=IO1- 2+ 3JdxAdyAdz.
ay Ox

Example 13.10

Let
A = x2zdxAdy - zsinxdyAdz+xezdx Adz.
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Then
dA= [x2 - z cosx + ez] dx A dy A dz .

0

Now the triumph of the theory of differential forms is Stokes's theo-
rem. It allows us to relate the integral of a 2-form over the boundary of
a domain to the integral of its exterior derivative over the interior. We
begin by stating and proving a version of Stokes's theorem for a cube.

Theorem 13.6
Let

W={(x,y,z)ER3:IxI<l,Iyj <1,jzI<1}.
Then the boundary OW of this cube consists of six squares, together
with their interiors. Let A be a 2-form with coefficients defined on W.
Then

Proof: We write

A=A=ill(x,y,z)dxAdy+tp2(x,y,z)dxAdz+T/'3(x,y,z)dyAdz.

Then, as we know,

dA 81
!LO2 +3J dxAdyAdz.
&Y ax

Now it is straightforward to calculate that

1 dA =1 ji J-i
[!t81 - + -x ] dxdydz

I I

= [f1f I
'0I(x,y,1)-1

I J- 'phi(x,y,-1)J

[j'j'(x,1,z)j'j'(x,_1z)]
1 I 1

rr1

+ -
fl

103(1, y, z) - j J- (-1' Y, z)J
I I

But this is nothing other than the integral of A over the six faces of the
cube.

Certainly there is nothing special about the unit cube in this last
result. Virtually the same proof shows that Stokes's theorem is valid
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Figure 13.5. Figures on which Stokes's theorem is valid.

on any cube. And a little extra effort shows that Stokes's theorem is
valid on any region that is the image under a linear map of a cube. See
Figure 13.5. Now we wish to pass to more general regions (with smooth
boundaries).

In its most natural setting, Stokes's theorem should be formulated
on any smoothly bounded domain. It says the following:

Theorem 13.7

Let W be a bounded domain in R3 with boundary that is a continuously
differentiable surface (i.e., parametrized by a function 4) that is contin-
uously differentiable). Let A be a 2-form defined on W, together with
its boundary, having continuously differentiable coefficients. Then

a= 1141 d,\fw wa

The proof of this general version of Stokes's theorem is fairly elab-
orate, and we shall not provide it here. See, for instance, (LOS] for a
complete treatment. The idea, very much in the spirit of calculus proofs
that you have seen before, is to approximate W by a union of cubes and
linear images of cubes, to invoke Stokes's theorem on each "cube", and
then add up the results. The error that occurs in the approximation can
be made arbitrarily small if the cubes are sufficiently small.
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Exercises
1. Prove that any set of vectors in Rk that is linearly independent

cannot have more than k elements.

2. Prove Proposition 13.1.

3. Prove Proposition 13.3.

4. Fix elements s, t, u E Rk. First assume that these three points
are colinear. By reduction to the one dimensional case, prove the
triangle inequality

118-0 :5 Iis-nll+Ilu-tll-

Now establish the general case of the triangle inequality by com-
parison with the colinear case.

5. Give another proof of the triangle inequality by squaring both sides
and invoking the Schwarz inequality.

6. If s, t E Rk then prove that

II$ + tU >_ Ilsll -11tll -

7. Formulate and prove the elementary properties of limits for func-
tions of k variables (refer to Chapter 6 for the one-variable ana-
logues).

8. Formulate and prove the elementary properties (regarding addi-
tion, scalar multiplication, etc.) of continuous functions of k vari-
ables (refer to Chapter 6 for the one-variable analogues).

9. Prove that the Implicit Function Theorem implies the Inverse
Function Theorem.

10. Give an example of a function f defined in a neighborhood of the
origin in Rk for which all partial derivatives exist at 0 but f is
not differentiable at 0. (Hint: The function f need not even be
continuous at 0.)

11. Prove Proposition 13.4.

12. Prove that a vector-valued function f is differentiable at a point
P if and only if it can be written as

f (P + h) = f (P) + Mp (f )h + Rp (f, h)

as discussed in the text prior to Theorem 13.2.
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13. Provide the details for the assertion about what the Chain Rule
shows in the proof of Taylor's Expansion.

14. Prove that a function satisfying the hypotheses of the Inverse Func-
tion Theorem is an open mapping in a neighborhood of the point
P.

15. Prove that the Implicit Function Theorem is still true if the equa-
tion f (xl , x2, ... , xk) = 0 is replaced by A X1, x2, ... , xk) = c.
(Hint: Do not repeat the proof of the Implicit Function Theorem.)

16. Let f (XI, x2) = ((x1)3 - x1 x2, sin(xi x2)) and 9(x1, x2, x3) =
(ln(xl + x3), cos x2). Calculate all the first partial derivatives of
fog.

17. Give an example of an infinitely differentiable function with do-
main R2 such that { (x1, x2) : f (xl , x2) = 0} _ {(x1, x2) : 1x112 +
Ix212<1}.

18. Formulate a definition of second derivative parallel to the definition
of first derivative given in Section 13.2. Your definition should
involve a matrix. What does this matrix tell us about the second
partial derivatives of the function?

19. Formulate and prove a product rule for derivatives of functions of
k variables.

20. Formulate and prove a sum and difference rule for derivatives of
functions of k variables.

21. Formulate and prove a quotient rule for derivatives of functions of
k variables.

22. If f and g are vector-valued functions both taking values in Rk and
both having the same domain, then we can define the dot product
function h(x) = f (x) g(x). Formulate and prove a product rule
for this type of product.

23. Formulate a notion of "bounded variation" for functions of two
real variables. Explain why your definition is a reasonable gen-
eralization of the notion for one real variable. (This matter was
originally studied by Tonelli).

24. Formulate a notion of uniform convergence for functions of k real
variables. Prove that the uniform limit of a sequence of continuous
functions is continuous.
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25. Formulate a notion of "compact set" for subsets of Rk. Prove
that the continuous image, under a vector-valued function, of a
compact set is compact.

26. Refer to Exercise 25. Prove that if f is a continuous function
on a compact set then f assumes both a maximum value and a
minimum value.

27. Prove that if a function with domain an open subset of Rk is
differentiable at a point P then it is continuous at P.

28. Justify our notion of distance in Rk using Pythagorean Theorem
considerations.

29. Verify the last two assertions in the proof of Theorem 13.2.

30. Let f be a function defined on a ball B(P, r). Let u = (ul, U2,..., uk)
be a vector of unit length. If f is differentiable at P then give a
definition of the directional derivative D. f (P) off in the direction
u at P in terms of Mp.

31. If f is differentiable on a ball B(P, r) and if My is the zero matrix
for every x E B(P, r) then prove that f is constant on B(P, r).

*

32. Refer to Exercise 30 for notation. For which collections of vectors
u1i u2, ... , uk in Rk is it true that if D.

j

f (x) = 0 for all x E
B(P, r) and all j = 1, 2, ..., k then f is identically constant?

33. There is no mean value theorem as such in the theory of functions
of several real variables. For example, if 7 : [0,1] -+ Rk is a
differentiable function on (0, 1), continuous on [0, 1], then it is not
necessarily the case that there is a point E (0,1) such that
y(l) - y(0). Provide a counterexample to substantiate this claim.

However, there is a serviceable substitute for the mean value theo-
rem: if we assume that y is continuously differentiable on an open
interval that contains [a, b] and if M = maxtEia,bi I7(t)I then

I7(b) - 7(a)I 5 M lb - al.

* 34.

Prove this statement.

Let f be a continuously differentiable function with domain the
unit ball in Rk and range R. Let P, Q be points of the ball. Using
Exercise 33 for inspiration, formulate and prove a sort of "mean
value theorem" for f that estimates 11(P) - f (Q) I in terms of the
gradient of f.
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35. Find a statement of Green's theorem in your calculus book. Derive
it from Stokes's theorem.

36. Discuss integration by parts in the context of Stokes's theorem.

* 37. Let A be a 2-form defined on all of R3. Suppose that

fs

for every compact, smooth surface S in R3. What can you conclude
about A?

38. Which 3-forms A on R3 have the property that A = da for some
2-form a on Rk?

39. Find all possible 2-forms A in R3 such that dA = dxl A dx2 A dx3.

40. Prove that, if w is a 2-form on the unit sphere {(x, y, z) E R3
x2 + y2 + z2 = 1) then fs dw = 0.

41. Confirm Stokes's theorem for the sphere { (x, y, z) : x2 + y2 f z2 =
1} and the 2-form A = x2 dx A dz - yz dy A dx. That is, explicitly
calculate both sides of the formula in Stokes's theorem.



Chapter 14

Advanced Topics

14.1 Metric Spaces
As you studied Chapter 13, and did the exercises developing the basic
properties of functions of several variables, you should have noticed that
many of the proofs were identical to those in Chapter 6. The arguments
generally involved clever use of the triangle inequality. For functions of
one variable, the inequality was for I I. For functions of several variables
the inequality was for 11 11.

This section formalizes a general context in which we may do anal-
ysis any time we have a reasonable notion of calculating distance. Such
a structure will be called a metric:

Definition 14.1 A metric space is a pair (X, p), where X is a set
and

p:X xX-+It ER:t>0}
is a function satisfying

1. Vx,yE X,P(x,y) =P(y,x)i

2. p(x,y)=0 if and onlyifx=y;

3. `dx, y, z E X, P(x, Y) < P(x, Z) + P(z, Y).

The function p is called a metric on X.

Example 14.1

The pair (R, p), where p(x, y) = Ix - yl, is a metric space. Each
of the properties required of a metric is in this case a restatement
of familiar facts from the analysis of one dimension.

The pair (Rk, p), where p(x, y) = jI x - y1 j, is a metric space.
Each of the properties required of a metric is in this case a

379
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restatement of familiar facts from the analysis of k dimensions.

The first example presented familiar metrics on two familiar spaces.
Now we look at some new ones.

Example 14.2

The pair (1R2, p), where p(x, y) = max{Ixt - iiiI, 1X2 - y2I}, is a
metric space. Only the triangle inequality is not trivial to verify;
but that reduces to the triangle inequality of one variable.

The pair (R, p), where ju(x, y) = 1 if x :h y and 0 otherwise,
is a metric space. Checking the triangle inequality reduces to
seeing that if x # y then either x 54 z or y # z.

Example 14.3

Let X denote the space of continuous functions on the interval
[0, 11. If f, g E X then let p(f, g) = suptEio,il If (t) - g(t)I. Then
the pair (X, p) is a metric space. The first two properties of
a metric are obvious and the triangle inequality reduces to the
triangle inequality for real numbers.

This example is a dramatic new departure from the analysis
we have done in the previous thirteen chapters. For X is a very
large space-infinite dimensional in a certain sense. Using the
ideas that we are about to develop, it is nonetheless possible to
study convergence, continuity, compactness, and the other basic
concepts of analysis in this more general context. We shall see
applications of these new techniques in later sections.

Now we begin to develop the tools of analysis in metric spaces.

Definition 14.2 Let (X, p) be a metric space. A sequence {xj } of
elements of X is said to converge to a point a E X if, for each f > 0.
there is an N > 0 such that if j > N then p(xj, a) < E. We call a the
limit of the sequence {xj}. We sometimes write xj -> a.

Compare this definition of convergence with the corresponding def-
inition for convergence in the real line in Section 3.1. Notice that it is
identical, except that the sense in which distance is measured is now
more general.

Example 14.4

Let (X, p) be the metric space from Example 14.3, consisting of
the continuous functions on the unit interval with the indicated
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metric function p. Then f = sin x is an element of this space,
and so are the functions

7 2e+1

fl =
(-1)e

(2e+ 1)!
e=o

Observe that the functions fi are the partial sums for the Tay-
lor series of sin x. We can check from simple estimates on the
error term of Taylor's theorem that the functions f3 converge
uniformly to f. Thus, in the language of metric spaces, f, -+ f
in the metric space notion of convergence.

Definition 14.3 Let (X, p) be a metric space. A sequence {x3 } of
elements of X is said to be Cauchy if, for each r > 0 there is an N > 0
such that if j, k > N then p(x3, xk) < E.

Now the Cauchy criterion and convergence are connected in the
expected fashion:

Proposition 14.1
Let {x,} be a convergent sequence, with limit a, in the metric space

(X, p). Then the sequence {x., } is Cauchy.

Proof: Let e > 0. Choose an N so large that if j > N then p(x a) <
E/2. If j, k > N then

P(x.3,xk) < P(x,.P)+P(P,xk) <
E

2
+

E

2
= E.

That completes the proof.

The converse of the proposition is true in the real numbers (with
the usual metric), as we proved in Section 3.1. However, it is not true in
every metric space. For example, the rationals Q with the usual metric
p(s, t) = Is - tI is a metric space; but the sequence

3,3.1,3.14,3.141,3.1415,3.14159,... ,

while certainly Cauchy, does not converge to a rational number. Thus
we are led to a definition:

Definition 14.4 We say that a metric space (X, p) is complete if
every Cauchy sequence converges to an element of the metric space.
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Thus the real numbers, with the usual metric, form a complete met-
ric space. The rational numbers do not.

Example 14.5

Consider the metric space (X, p) from Example 14.3 above, con-
sisting of the continuous functions on the closed unit interval
with the indicated metric function p. If {gj } is a Cauchy se-
quence in this metric space then each gj is a continuous function
on the unit interval and this sequence of continuous functions
is Cauchy in the uniform sense (see Chapter 9). Therefore they
converge uniformly to a limit function g that must be contin-
uous. We conclude that the metric space (X, p) is complete.
0

Example 14.6

Consider the metric space (X, p) consisting of the polynomials,
taken to have domain the interval [0, 1], with the distance func-
tion p(f,g) = SUP=E[0,11 If (t) -g(t)I. This metric space is not
complete. For if h is any continuous function on [0, 11 that is
not a polynomial, such as h(x) = sinx, then by the Weierstrass
Approximation Theorem there is a sequence {pj } of polynomials
that converges uniformly on [0, 11 to h. Thus this sequence {pj}
will be Cauchy in the metric space, but it does not converge to
an element of the metric space. We conclude that the metric
space (X, p) is not complete.

If (X, p) is a metric space then an (open) ball with center P E X
and radius r is the set

B(P, r) = {x E X : p(x, P) < r} .

The closed ball with center P and radius r is the set

B(P,r)={xEX:p(x,P)<r}.

Definition 14.5 Let (X, p) be a metric space and E a subset of X.
A point P E E is called an isolated point of E if there is an r > 0 such
that E n B(P, r) = {P}. If a point of E is not isolated then it is called
nonisolated.

We see that the notion of "isolated" has intuitive appeal: an isolated
point is one that is spaced apart-at least distance r--from the other
points of the space. A nonisolated point, by contrast, has neighbors that
are arbitrarily close.
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Definition 14.6 Let (X, p) be a metric space and f : X - R. If
P E X and t E R we say that the limit of f at P is 1, and write

Jim f(X) = 1,

if for any e > 0 there is a a > 0 such that if 0 < p(x, P) < 6 then
If(x)-11 <E.

Notice in this definition that we use p to measure distance in X-that
is the natural notion of distance with which X comes equipped-but we
use absolute values to measure distance in R.

The following lemma will prove useful.

Lemma 14.1
Let (X, p) be a metric space and P E X. Let f be a function from X

to R. Then limz.p f (x) = e if and only if, for every sequence {xj } C X
satisfying xj - P, it holds that f (xj) -' f (P).

Proof: This is straightforward and is treated in the exercises.

Definition 14.7 Let (X, p) be a metric space and E a subset of X.
Suppose that P E E. We say that a function f : E -+ R is continuous
at P if

aim f(x) = f(P)

Example 14.7

Let (X, p) be the space of continuous functions on the interval
[0, 1] equipped with the supremum metric as in Example 14.3
above. Define the function F : X --+ R by the formula

F(f) = f f(t) dt.'
0

Then F takes an element of X, namely a continuous function,
to a real number, namely its integral over 10, 11. We claim that
F is continuous at every point of X.

For fix a point f E X. If { fj} is a sequence of elements
of X converging in the metric space sense to the limit f, then
(in the language of classical analysis as in Chapters 6-9) the f j
are continuous functions converging uniformly to the continuous
function f on the interval [0, 1]. But, by Theorem 9.2, it follows
that

ff,(t)dt_sjf(t)dt.
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But this just says that F(f3) -> F(f ). Using the lemma, we
conclude that

liI f.F(g) = F(f )

Therefore F is continuous at. f .

Since f E X was chosen arbitrarily. we conclude that the
function F is continuous at every point of X.

In the next section we shall develop some topological properties of
metric spaces.

14.2 Topology in a Metric Space
Fix a metric space (X, p). A set. U C X is called open if for each u e U
there is an r > 0 such that. r) C U. A set E C_ X is called closed if
its complement in X is open.

Example 14.8

Consider the set of real numbers K equipped with the metric
p(s, t) = I if s t and p(s. t) = 0 otherwise. Then each single-
toll U = {x} is an open set. For let P be a. point of U. Then
P =.r and the ball B(P, 1/2) ties in U.

However, each singleton is also closed. For the complement.
of the singleton LT = {x} is the set S = R \ f x}. If s E S then
B(s, 1/2) C S as in the preceding paragraph.

Example 14.9

Let (X, p) be the metric space of continuous functions on the in-
terval [0, 11 equipped with the metric p(f, g) = sup,.Elo,11 1f (:r) -
g(x)I. Define

U={fEX: f(1/2)>5}.
Then U is all open set in the metric space. To verify this asser-
tion, fix an element f E U. Let. e = f (1/2) - 5 > 0. We claim
that the metric ball B(f, e) lies in U. For let g E B(f, e). Then

9(1/2) ? f(1/2) - if (1/2) -9(1/2)1
> f(1/2) -

f(1/2) - f
=5.

It follows that g E U. Since g E B(f, c) was chosen arbitrarily,
we may conclude that B(f, e) C U. But this says that U is
open.
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We may also conclude from this calculation that

`U ={f EX: f(1/2)<5}

is closed. 0
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Definition 14.8 Let (X, p) be a metric space and S C X. A point
x E X is called an accumulation point of S if every B(x, r) contains
infinitely many elements of S.

Proposition 14.2
Let (X, p) be a metric space. A set S C X is closed if and only if every

accumulation point of S lies in S.

Proof: The proof is similar to the corresponding result in Section 5.1
and we leave it to the exercises. 0

Definition 14.9 Let (X, p) be a metric space. A subset S C_ X is
said to be bounded if S lies in some ball B(P, r).

Definition 14.10 Let (X, p) be a metric space. A set S C X is said
to be compact if every sequence in S has a subsequence that converges
to an element of S.

Example 14.10

In Chapter 5 we learned that, in the real number system, com-
pact sets are closed and bounded, and conversely. Such is not
the case in general metric spaces.

As an example, consider the metric space (X, p) consisting
of all continuous functions on the interval [0, 11 with the supre-
mum metric as in previous examples. Let

S = { f, (x) = x' : j = 1,2 ....} .

This set is bounded since it lies in the ball B(0, 2) (here 0 de-
notes the identically zero function). We claim that S contains
no Cauchy sequences. This follows (see the discussion of uni-
form convergence in Chapter 9) because, no matter how large
N is, if k > j > N then we may write

lfi(x) - fk(x)I = Ill ((xk-i
_ 1)1 .
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Fix j. If x is sufficiently near to 1 then Ixj I > 3/4. But then we
may pick k so large that Ixk-3I < 1/4. Thus

Ifk(x) - fj(x)I > 9/16.

So there is no Cauchy subsequence. We may conclude (for vac-
uous reasons) that S is closed.

But S is not compact. For, as just noted, the sequence
{ f j } consists of infinitely many distinct elements of S which do
not have a convergent subsequence (indeed not even a Cauchy
subsequence).

In spite of the last example, half of the Heine-Borel theorem is true:

Proposition 14.3
Let (X, p) be a metric space and S a subset of X. If S is compact then

S is closed and bounded.

Proof: Let {sj } be a Cauchy sequence in S. By compactness, this
sequence must contain a subsequence converging to some limit P. But
since the full sequence is Cauchy, the full sequence must converge to P
(Exercise). Thus S is closed.

If S is not bounded, we derive a contradiction as follows. Fix a point
Pi E S. Since S is not bounded we may find a point P2 that has distance
at least 1 from P1. Since S is unbounded, we may find a point P3 of S
that is distance at least 2 from both P1 and P2. Continuing in this fash-
ion, we select Pj E S which is distance at least j from P1, P2, ... P3_1.
Such a sequence { Pj } can have no Cauchy subsequence, contradicting
compactness. Therefore S is bounded.

Definition 14.11 Let S be a subset of a metric space (X, p). A
collection of open sets (00-EA (each O« is an open set in X) is called
an open. covering of S if

UaEAOU : S.

Definition 14.12 If C is an open covering of a set S and if V is
another open covering of S such that each element of V is also an element
of C then we call V a subcovering of C.

We call V a finite subcovering if V has just finitely many elements.

Theorem 14.1
A subset S of a metric space (X, p) is compact if and only if every open
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covering C = {O }QEA of S has a finite subcovering.

Proof: The forward direction is beyond the scope of this book and
we shall not discuss it.

The proof of the reverse direction is similar in spirit to the proof in
Section 5.3 (Theorem 5.3). We leave the details for the exercises.

Proposition 14.4
Let S be a compact subset of a metric space (X, p). If E is a closed

subset of S then E is compact.

Proof: Let C be an open covering of E. The set U = X \ E is open and
the covering C' consisting of all the open sets in C together with the open
set U covers S. Since S is compact we may find a finite subcovering

01,O2.... Ok

that covers S. If one of these sets is U then discard it. The remaining
k - 1 open sets cover E.

The Exercises will ask you to find an alternative proof of this last
fact.

14.3 The Baire Category Theorem
Let (X, p) be a metric space and S C X a subset. A set E C X is said
to be dense in S if every element of S is the limit of some sequence of
elements of E.

Example 14.11

The set of rational numbers Q is dense in any subset of the reals
IR equipped with the usual metric.

Example 14.12
Let (X, p) be the metric space of continuous functions on the
interval [0, 1] equipped with the supremum metric as usual. Let
E C X be the polynomial functions. Then the Weierstrass
Approximation Theorem tells us that E is dense in X.
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Example 14.13

Consider the real numbers IER with the metric p(s, t) = 1 if s t
and p(s, t) = 0 otherwise. Then no proper subset of R is dense
in R. To see this, notice that if E were dense and were not all of
llt and if P E R\ E then p(P, e) > 1/2 for all e E E. So elements
of E do not get close to P. Thus E is not dense in R.

Definition 14.13 If (X, p) is a metric space and E C X then the clo-
sure of E is defined to be the union of E with the set of its accumulation
points.

Example 14.14

Let (X, p) be the set of real numbers with the usual metric and
set E = Q fl (-2.2). Then the closure of E is [-2.2].

Let (Y, a) be the continuous functions on [0, 1] equipped
with the supremum metric as in Example 14.3. Take E C Y to
be the polynomials. Then the closure of E is Y.

We note in passing that if B(P, r) is a ball in a metric space (X, p)
then B(P, r) will contain but need not be equal to the closure of B(P, r)
(for which see Exercise 6).

Definition 14.14 Let (X, p) be a metric space. We say that E C X
is nowhere dense in X if the closure of E contains no ball B(x, r) for
any x E X, r > 0.

Example 14.15

Let us consider the integers Z as a subset of the metric space R
equipped with the standard metric. Then the closure of Z is Z
itself. And of course Z contains no metric balls. Therefore Z is
nowhere dense in R. 0

Example 14.16

Consider the metric space X of all continuous functions on the
unit interval [0, 1], equipped with the usual supremum metric.
Fix k > 0 and consider

E _ {p(x) : p is a polynomial of degree not exceeding k}.

Then the closure of E is E itself (that is, the limit of a sequence
of polynomials of degree not exceeeding k is still a polynomial
of degree not exceeding k-details are requested of you in the
exercises). And E contains no metric balls. For if p E E and
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r > 0 then p(x) + (r/2) xk+1 E B(p, r) but p(x) + (r/2) xk+1 ¢
E.

We recall, as noted in Example 14.14 above, that the set
of all polynomials is dense in X; but if we restrict attention to
polynomials of degree not exceeding a fixed number k then the
resulting set is nowhere dense.

Theorem 14.2 [The Baire Category Theorem]
Let (X, p) be a complete metric space. Then X cannot be written as
the union of countably many nowhere dense sets.

Proof: This proof is quite similar to the proof that we presented in
Chapter 5 that a perfect set must be uncountable. You may wish to
review that proof at this time.

Seeking a contradiction, suppose that X may be written as a count-
able union of nowhere dense sets Yl, Y2i .... Choose a point x1 E cY1.
Since Yl is nowhere dense we may select an rl > 0 such that B1
B(x1, ri) satisfies B, fl Y1 = 0. Assume without loss of generality that
rl < 1.

Next, since Y2 is nowhere dense, we may choose x2 E B1 fl °Y2
and an r2 > 0 such that B2 = B(x2i r2) C Bl fl `=Y2. Shrinking B2 if
necessary, we may assume that r2 < 2r1. Continuing in this fashion, we
select at the jth step a point x? E B, - i n `Y, and a number r.7 > 0 such
that r. <2r_, _1andB. =B(x,,r.,)CBj_ll`Y..

Now the sequence {x,} is Cauchy since all the terms x., for j > N
are contained in a ball of radius rN < 2-N hence are not more than
distance 2-N apart. Since (X, p) is a complete metric space, we con-
clude that the sequence converges to a limit point P. Moreover, by
construction, P E B. for every j hence is in the complement of every
YJ . Thus U. Y) # X. That is a contradiction, and the proof is com-
plete.

Before we apply the Baire Category Theorem, let us formulate some
restatements, or corollaries, of the theorem which follow immediately
from the definitions.

Corollary 14.1
Let (X, p) be a complete metric space. Let Y1i Y2,. .. be countably

many closed subsets of X, each of which contains no nontrivial open
ball. Then U, YY also has the property that it contains no nontrivial
open ball.
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Corollary 14.2
Let (X, p) be a complete metric space. Let 01, 02.... be countably

many dense open subsets of X. Then ni Oi is dense in X.

Note that the result of the second corollary follows from the first
corollary by complementation. The set f, O. while dense, need not be
open.

Example 14.17

The metric space R, equipped with the standard Euclidean met-
ric, cannot be written as a countable union of nowhere dense
sets. 0

By contrast, Q can be written as the union of the singletons {qi }
where the qi represent an enumeration of the rationals. Each singleton
is of course nowhere dense since it is the limit of other rationals in the
set. However, Q is not complete.

Example 14.18

Baire's theorem contains the fact that a perfect set of real num-
bers must be uncountable. For if P were perfect and countable
we could write P = {pl, p2i ...}. Therefore

00

P= U{Pi}.
j=1

But each of the singletons {pi } is a nowhere dense set in the
metric space P. And P is complete. (You should verify both
these assertions for yourself.) This contradicts the Category
Theorem. So P cannot be countable. 0

A set that can be written as a countable union of nowhere dense sets
is said to be of first category. If a set is not of first category, then it is
said to be of second category. The Baire Category Theorem says that a
complete metric space must be of second category. We should think of a
set of first category as being "thin" and a set of second category as being
"fat" or "robust." (This is one of many ways that we have in mathe-
matics of distinguishing "fat" sets. Countability and uncountability is
another. Lebesgue's measure theory is a third.)

One of the most striking applications of the Baire Category Theorem
is the following result to the effect that "most" continuous functions
are nowhere differentiable. This explodes the myth that most of us
mistakenly derive from calculus class that a typical continuous function
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is differentiable at all points except perhaps at a discrete set of bad
points.

Theorem 14.3
Let (X, p) be the metric space of continuous functions on the unit

interval [0, 1] equipped with the metric

P(f, 9) = sup I f (x) - 9(x)1
ZE10,1J

Define a subset of E of X as follows: f E E if there exists one point
at which f is differentiable. Then E is of first category in the complete
metric space (X, p).

Proof: For each pair of positive integers m, n we let

Am,n = {f E X : 3x E [0, 1] such that 11(x) - f (t)l < nix - tj

V t E [0, 1] that satisfy Ix - tj < 1/m} .

Fix m and n. We claim that Am,n is nowhere dense in X. In fact, if
f E Am,n set

AX ± 1/m) - f(x)K1 = maxi I

1/m I

Let h(x) be a continuous piecewise linear function, bounded by 1, con-
sisting of linear pieces having slope 3K1. Then for every e > 0 it holds
that f + e - h has metric distance less than a from f and is not a member
of Am,n. This proves that Am,n is nowhere dense.

We conclude from Baire's theorem that Um,nAm,n is nowhere dense
in X. Therefore S = X \ Um,nAm,n is of second category. But if f E S
then for every x E [0, 1] and every n > 0 there are points t arbitrarily
close to x (that is, at distance < 1/m from x) such that

Ax)-f(t)I >n.t-x
It follows that f is differentiable at no x E [0, 1]. That proves the asser-
tion. 0

14.4 The Ascoli-Arzela Theorem
Let F = {f Q }oEA be a family, not necessarily countable, of functions
on a metric space (X, p). We say that the family F is equicontinuous
on X if for every e > 0 there is a 6 > 0 such that when p(s, t) <



392 Chapter 14: Advanced Topics

cS then fp(s) - fa(t)I < e. Notice that equicontinuity mandates not
only uniform continuity of each f,,, but also that the uniformity occur
simultaneously, and at the same rate, for all the fQ.

Example 14.19

Let (X, p) be the unit interval [0, 11 with the usual Euclidean
metric. Let .7= consist of all functions f on X that satisfy the
Lipschitz condition

If (s) - f (t)I < 2. Is - tj

for all s, t. Then F is an equicontinuous family of functions.
For if >0 then we may take 6 = (/2. Then if Is-ti<6 and
f E F we have

If(s)-f(t)I <2.6=e.

Observe, for instance, that the Mean Value Theorem tells us
that sin x, cos x, 2x, x2 are elements of Y.

If F is a family of functions on X, then we call F equibounded if
there is a number M > 0 such that

If W1 <- M

for all x E X and all f E F. For example, the functions fj(x) = sin jx
on [0, 1] form an equibounded family.

One of the cornerstones of classical analysis is the following result
of Ascoli and Arzela:

Theorem 14.4 (The Ascoli-Arzela Theorem]
Let (Y, a) be a metric space and assume that Y is compact. Let F be
an equibounded, equicontinuous family of functions on Y. Then there is
a sequence {f j } C F that converges uniformly to a continuous function
on Y.

Before we prove this theorem, let us comment on it. Let (X, p)
be the metric space consisting of the continuous functions on the unit
interval [0, 1] equipped with the usual supremum norm. Let F be an
equicontinuous, equibounded family of functions on [0, 11. Then the the-
orem says that F is a compact set in this metric space. For any infinite
subset of Jr is guaranteed to have a convergent subsequence. As a re-
sult, we may interpret the Ascoli-Arzela theorem as identifying certain
compact collections of continuous functions.
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Proof of the Ascoli-Arzela Theorem: We divide the proof into a
sequence of lemmas.

Lemma 14.2
Let i > 0. There exist finitely many points yl, y2, ... yk E Y such that

every ball B(s, r/) C Y contains one of the yj. We call yl,..., yk an it-net
for Y.

Proof: Consider the collection of balls {B(y, 71/2) : y E Y}. This is
an open covering of Y hence, by compactness, has a finite subcover-
ing B(yi, Y7/2),..., B(yk, 77/2). The centers yl,..., yk are the points we
seek. For if B(s, ri) is any ball in Y then its center s must be con-
tained in some ball B(yj, 77/2). But then B(yj, r7/2) C B(s, r/) hence, in
particular, yj E B(s, ri). 0

Lemma 14.3
Let e > 0. There is an r) > 0, a corresponding q-net yl, ... yk, and a

sequence { fm } C F such that

The sequence { fm(ye)},°=1 converges for each yt;

For any y E Y the sequence { f n(y)}j j is contained in an interval
in the real line of length at most E.

Proof: By equicontinuity there is an q > 0 such that if p(s, t) < 11 then
I f (s) - f (t) I < E/3 for every f E.F. Let yl, ... , yk be an 7-net. Since
the family F is equibounded, the set of numbers {f(y) : f E F} is
bounded. Thus there is a subsequence f j such that { f j (yl) } converges.
But then, by similar reasoning, we may choose a subsequence

fj,, (y2) } converges. Continuing in this fashion, we may find a
sequence, which we call { f,,, }, which converges at each point Vt. The first
assertion is proved. Discarding finitely many of the f,,,s, we may suppose
that for every m, n and every j it holds that I fn (yj) - fn (yj) I < e/3.

Now if y is any point of Y then there is an element yt of the rpnet
such that p(y, yt) < r/. But then, for any m, n, we have

I fm(y) - fn(y)I : I fm(Y) - fm(yt)I
+ Ifm(Yt) - fn(yt)I
+ Ifn(yt) - fn(y)I

E E<3+3+ E
3

= E.
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That proves the second assertion. 0

Proof of the Theorem: With e = 2-1 apply Lemma 14.3 to obtain
a sequence f,,,. Apply Lemma 14.3 again, with s = 2-2 and the role
of F being played by the sequence if .. }. This yields a new sequence
If,,,, }. Apply Lemma 14.3 once again with e = 2-3 and the role of F
being played by the second sequence Keep going to produce a
countable list of sequences.

Now produce the final sequence by selecting the first element of
the first sequence, the second element of the second sequence, the third
element of the third sequence, and so forth. This sequence, which we
call {f,,,}, will satisfy the conclusion of the theorem.

For if e > 0 then there is a j such that 2-i < E. After j terms, the
sequence {f t, } is a subsequence of the jth sequence constructed above.
Hence at every y E Y all the terms f,, (y), w > j, lie in an interval of
length F. But that just verifies convergence at the point y. Note more-
over that the choice of j in this last argument was independent of y E Y.
That shows that the convergence is uniform. The proof is complete. 0

14.5 The Lebesgue Integral
There are two primary motivations for studying Lebesgue measure the-
or :

(a) It is desirable to measure the length of any subset of the real line.

(b) It is desirable to have a theory of the integral in which the syllogism

lim f j (x) dx = J lim fj (x) dx
j_oo (*)

holds in greatest possible generality.

It turns out that both of these desiderata are too ambitious. In fact (a)
is impossible. In order to have a feasible and useful theory of measuring
sets, we must restrict attention to a particular class of sets. As for (b),
we can certainly construct a theory of the integral in which (*) is easy
and natural. But there is no "optimal" theory.

The Lebesgue integral addresses both of the above issues very nicely.
We shall invest a few pages in this section to providing a brief introduc-
tion to the pertinent ideas. We will not be able to prove all the results,
but we can state them all precisely and provide some elucidating ex-
amples. The notion of length that we shall develop here is called a
"measure". We begin by showing why not all sets are measurable.
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Example 14.20

We work on the interval 1 = 10, 11, with addition modulo 1
(which means just that when we add two numbers we subtract
off the greatest integer to obtain an answer between 0 and 1).
If x, y E I then we say that x . y if x - y is rational. It is easy
to see that this is an equivalence relation; we leave the details
to the reader.

Now we form a set S by selecting one element from each
equivalence class.' Then let Sq = is + q : s E S} for each
rational number q E I. Of course we perform all additions
modulo 1. Then the sets S. are pairwise disjoint.

So we have that UgSq = 1 and each set S. has the same
length (since they are all translates of each other). There are
countably many of the Sq. So what length m(Sq) should we
assign to Sq? If we assign some positive length, m(Sq) = A > 0,
then we see that

m(I) =1: m(SS)=EA=+oo;
q q

thus I has infinite length, which is clearly not true.
If we instead assign 0 length to Sq, m(Sq) = 0, then the

measure of I is 0 (since that is the limit of the partial sums
EIgI<N rra(Sq)). That is also a contradiction. We conclude that
there is no sensible length that we can logically assign to Sq. 0

The correct conclusion to draw from this example is that not all sets
can be measured. We need to give a rule that identifies those sets that
we are allowed to measure.

14.5.1 Measurable Sets

We proceed indirectly, by first defining a preliminary version of a mea-
sure (called an outer measure). If .1 = (a, b) is any open interval, we let
I J I be the the ordinary length of J: IJI = b - a. Now we measure the
"length" of any set by considering coverings of that set by intervals.

Definition 14.15 Let S C R be a set. We define

m* (S) = inf E II, 1,SCUlh
7

1This step requires a powerful idea from logic called the Axiom of Choice. See, for
example, [KRA4].
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where the infimum is taken over coverings of S by collections { f, } of
open intervals.

Example 14.21

Let J = [a, b] be any closed interval. Then m` (J) = b - a.
To see this, first observe that J C I =- (a - E, b + E). Then, by
definition,

m*(J)<III=(b-a)+2E.
It follows that m*(J) < b - a, and that is half of what we wish
to prove.

For the opposite inequality, let {Ij} be a covering of J by
open intervals. By a straightforward procedure, we may refine
this covering so that no interval is contained in the union of the
others. Let the intervals, from left to right, be L1 = (a1, b1),
L2 = (a2, b2), .... Lk = (ak, bk). Then

k

E11,1>EILtI

> bk - al

> b-a.
Since this is an estimate from below for an arbitrary covering of
J by open intervals, we conclude that m*(.I) > b - a.

Putting together the two estimates yields that rn*(J) _
b-a.

Example 14.22

The outer measure m.* of the set of rational numbers is zero. To
see this, let {q1}11 be an enumeration of Q. Let c > 0. Now
let 11 be an open interval centered at ql of length c-/2. Let 12
be an open interval centered at q2 of length f.:/4. Continuing,
let I,, each j, be an open interval of length E/22 centered at q..
Then Q C Ur Il . Hence

J

J=1

Since this estimate holds for every c > 0, and since m*(Q) > 0
automatically, we conclude that m* (Q) = 0. 0

Observe that the argument in the last example can be used to show
that any countable set has outer measure 0. It is immediate, and we leave
the details as an exercise, that if A C B then m* (A) < m*(B). It is just
as obvious that if A and B are sets then m* (A U B) < m* (A) + m.* (B).
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Now do not be misled. We have a way of assigning an "outer mea-
sure" to any set. But, based on Example 14.20, we cannot assume that
this outer measure will behave in a reasonable manner. In particular,
we cannot suppose that it will be countably additive (i.e., that the mea-
sure of the countable union of disjoint sets will equal the sum of the
measures of the individual sets). Our example rules out that possibil-
ity. So we must restrict ourselves to measuring only certain sets. This
consideration leads to the next definition.

Definition 14.16 Let E C I8 be a set. We say that E is measurable
if, for any set A C R,

m* (A) = m* (A n E) + m* (A \ E).

It will turn out that (i) the set S that we constructed in Example
14.20 is not measurable according to this definition, and (ii) the mea-
surable sets given by Definition 14.16 do satisfy countable additivity and
other reasonable properties that we expect of a measure.

Observe that it is always the case that

m*(A) < m*(A n E) + m*(A \ E).

Hence our condition for measurability comes down to checking that

m*(A) > m*(A n E) + m* (A \ E). (*)

Now we will definitely not develop all the properties of measurable
sets. But we will describe the theory, proving some results along the
way. The reader interested in the fall story can consult, for example,
[ROY] or [RUD2].

Proposition 14.5
If E C R and m* (E) = 0 then E is measurable.

Proof: Let A C I8 be any set. Then A n E C E so it is easy to see
that m* (A n E) = 0. Likewise A \ E C A hence m* (A \ E) < m* (A). It
follows that

m*(A) > m*(A\E) = m*(A \ E) + m*(A n E).

This is condition (*). 0

Proposition 14.6
If El, E2 are measurable sets then so is El U E2.
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Proof: Let A C R be any set. The hypothesis that F1 is measurable
implies that

m'(A\El) =m"((A\El)nE2)+m*((A\EI)\E2).

Noting that

An(EluE2) = (A n EI) U ((A n E2) \E1).

we see that

7n* (A n (El U E2)) < rn*(A n El) + m`((A n E2) \ El).

In conclusion,

m*(An(El UE2))+7n'((A\EI)\E2)
<m*(AnE1)+m'((AnE2)\El)+m*((A\EI)\E2)
=m*(AnEI)+m'(A\F1) =m*(A).

The last equality is valid since E1 is measurable. Finally observe that
C(EI U E2) =''E1 n'E2 and conclude that E1 U E2 is measurable.

Applying this last result inductively, we may conclude that any fi-
nite union of measurable sets is measurable. It is immediate from the
definition that the complement of a measurable set is measurable. These
two properties taken together tell us that the collection M of measurable
sets forms an algebra.

In fact more is true. Any countable union of measurable sets is
measurable. Thus we say that M is a v-algebra.

In case E E M then we will declare the measure m(E) of E to be
just its outer measure ni-(E). Thus m(E) = na'(E) for measurable sets
E. Let us once again repeat the fundamental point about measurable
sets: We may calculate the outer measure m* of any set. But if we want
our notion of measure (or length) to behave in a reasonable way-to be
countably additive, for example-then we must restrict our attention to
measurable sets (the elements of M). For a measurable set. we define
the measure m(E) = m' (E).

It is time to abandon abstractions and address the concrete: Which
sets are measurable? How can we recognize a measurable set? The
following lemma is key to answering this question:

Lemma 14.4
The interval (0, co) is measurable.
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Proof: Let A C R be an arbitrary set. Set Al = A n (0, oo) and
A2 = A \ (0, oo). Our job, then, is to show that

m'(A,)+m*(A2) <m'(A). (s)

If m*(A) = oo then inequality (*) is immediate. Instead suppose
that M*(A) < oo. Let e > 0. Then, by definition of the outer measure,
there is a collection {Ii } of open intervals that covers A and such that

IiiI <m'(A)+e.

Let II = I. n (0, oo) and I = Ii \ (0, oo). Then I,' and 17 are intervals
(or possibly empty) and

IIiI =II;I+II I=m*(Ii')+m'(1 ).

Since Al C UiII we have

m*(Ai) <m'(UgIj) <Em'(II).
2

Also, since A2 C Ui Ij", we have

.m*(A2) < m*(U?I?') < Em'(17)
i

In conclusion,

m*(Al)+m`(A2) <_ E(m'(1)+m V7))

+1171)

Since e > 0 was arbitrary, we conclude that

m' (A,) + m* (A2) < m' (A) ,

as was to be proved. 0

An identical argument shows that any interval of the form (a, oo)
is measurable. Now, taking complements and unions, we find that any



400 Chapter 14: Advanced Topics

interval whatever is measurable. But any open set is a union of intervals.
So we see that open sets are measurable. By complementation, closed
sets are measurable. Finally, any set that may be obtained from the
open and closed sets by way of (at most) countable union and comple-
mentation is measurable. We call this last collection of sets the Borel
sets. Thus all Borel sets are measurable.

We conclude this subsection by recording an important additivity
property of measurable sets. The proof is omitted.

Proposition 14.7
Let E1, E2, ... be a sequence of pairwise disjoint, measurable sets. Then

m UEj = >2m(Ej).
i i

14.5.2 The Lebesgue Integral

Now we may construct the Lebesgue integral. If E is any measurable
set then let

1ifxeE
0 if x ¢ E

be the characteristic (or indicator) function of E.
A function f is called simple if it is a finite linear combination of

characteristic functions. Specifically, if El, ... , Ek are measurable sets
then

k

f(x)= ajXE2,
j=1

for aj real constants, is a simple function. For such an f, we define

f f (x) dx = ajm(Ej).

This definition is consistent with our intuition of what the integral is
supposed to do (Figure 14.1).

Now we need to define the class of functions that we can integrate.
Just as we only allow ourselves to measure certain sets (so as to avoid
contradictions), so we only allow ourselves to integrate certain functions.
A function f : ll8 -* )lP is said to be measurable if f (U) is measurable
whenever U is open.
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Y

t i+ i t l t t l { t i t t F t t I I I

Figure 14.1

REMARK 14.1 Recall that a function f is continuous if f-1(U)
is open whenever U is open (Section 6.2). The definition of measurable
function is modeled on that idea. I

Certainly any simple function is a measurable function. More gen-
erally, it can be shown that if 0 < fl < f2 < f3 . are simple functions
then

f (x) = slim fi (x)

is a measurable function. Conversely, any nonnegative, measurable func-
tion is the pointwise limit of an increasing sequence of simple functions.
Notice that if h, k are simple functions and h(x) < k(x) for all x then
f h(x) dx < f k(x) dx.

Definition 14.17 Let f be a nonnegative measurable function. Write
f as the limit of the increasing sequence of simple functions f j. Then
define

jJ
f (x) dx = lim J f, (x) dx.00

If f : R - R is a measurable function, taking both positive and
negative (and zero) values, then write

f(x) = f(x) x{x f(z)>o} + f(x) f+ (x) - f (x)
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Then we set

f f(x) dx =rf+(x)dx-J f- (x)dx.

So now we have a new definition of the integral for a broad class
of functions (the measurable functions). Notice that, whereas we de-
fined the Riemann integral by breaking up the domain of the function
(thus creating Riemann sums), we now define the Lebesgue integral by
breaking up the range of the function (thus approximating by simple
functions).

If f is a measurable function then we define the essential supremum
f to be the infimum of all positive numbers M such that m{x E R :
If(x)I>M}=0.

Example 14.23

Let

f(x)=
1O1if x#0

ifx=0.
Then the essential supremum of f is 1.

Example 14.24
Let f be a measurable function on the interval [0, 1] and assume
that the essential supremum of f is M. Then

/1
lim J If(x)Iidxl/i=M.) 00 0

To see this, first observe that

m I f(x)lidxt/' < MJli
i~00

trivially. Let e > 0. There is a set E of some positive measure
6 > 0 such that If (x) I > M - e on E. Then

0
f t

f(x)Ij dxIf(x)Iidx'11 = [fE I

1[
1/i

+ if dxJ
flo

, 11\E

> J[M -

= [M - e] J. [m(E)]t/i
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Letting j -> oo yields

r1
liminfJ If(x)I2dxl11 > M -
j-,00 0

-
Since e > 0 was arbitrary, the result is proved.

We conclude this subsection by noting that if f is a measurable
function and E is a measurable set then we define

fE.l(x)dx =J 1(x)-XE(x)dx

whenever the integral on the right makes sense.

14.5.3 Calculating with the Lebesgue Integral
The point of the Lebesgue integral is twofold:

We can now integrate a broader class of functions than we could
integrate with the Riemann integral.

The Lebesgue integral allows more flexible limiting operations than
were possible with the Riemann integral.

Let us begin to explore this new world. We begin by recording some
terminology. We say that a property P(x) holds almost everywhere if
P(x) is true for all x except possibly for x in a set of measure zero.

Example 14.25

Let
f(x)_ 1ifxER\Q,0<x<1

to otherwise

Observe that Q is measurable and [0, 1] is measurable hence
Qn [0,1] is measurable and [0, 1] \Q is measurable. In particular,
f is a measurable function. In fact f is a simple function. So

f
But certainly

m({xER:0<x<1,xeQ})=0
hence

m({x ER:0<x<1,x¢Q}=1.
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It follows that

fi
Notice that f is discontinuous at every point. By Exercise

4 of Chapter 8, f is not Riemann integrable. So we may not
speak of the Riemann integral of f.

Proposition 14.8
Let E, be measurable sets with E1 D E1 D . and rn(E1) < oc. Then

00

rn
I I

E3) = urn m(E,).
1=1

Proof: Let E = l,E,. Set F, = E, \ E,+1, each j. Then

El\E=UF,.
9=1

Also the sets F. are pairwise disjoint. Thus

rn(El \ E) = E m(F,) = E ni(E, \ E,+1) .
J=1 J=1

But E C E1 and E,+1 c E, hence rn(E1) = m,(E) +m(E1 \ E) and
m(E,) = m(E,+1)+m(E, \E,+1). Since m(E,) < m(E1) < oo, we have
m(E1 \ E) = m(E1) - m(E). Also m(E, \ E.1+1) = rnz(E,) - m(E,+1)
Hence

00

m(E1) - m(E) = >2(m(E,) - m(E,+1 ))
J=1

n-1
lim E(m(E,) - m(E,+r))n-.

j=1
= lim (m(E1) - m.(En))n-oo
= rn(E1) - lim rn(En) .n-x

Since m(E1) < oo, we conclude that

m(E) = lim m(En) .n-or,

We next illustrate an important principle from real analysis about
the strengthening of convergence results using measure theory. This
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result says that a sequence of functions that is pointwise convergent is
"almost" uniformly convergent.

Proposition 14.9 [Egorov]
Let E be a measurable set of finite measure. Let {f} be a sequence
of measurable functions with domain E. Assume that MX)(x) -+ P X) for
each x E E. Then, for each E > 0 and 5 > 0 there is a measurable set
A C E with m(A) < 5 and an integer N > 0 such that for all x E E \ A
and j > N we have

Ifj(x)-f(x)I <E.

Proof: For j = 1, 2.... and N = 1, 2,. .. set

Gj = {x E E : l fj(x) - f(x)I > E}

and

00

EN UGj={xEE:1fj(x)-f(x)I>Eforsome j>N}.
j=N

Observe that EN 2 EN+1 for each N.
Now for each x E E there must be an N > 0 such that x g EN, just

because fj(x) -' f(x). Hence f1NEN = 0. We conclude, by Proposition
14.8, that limN-,,. m(EN) = 0. Thus, given b > 0, there is an N such
that m(EN) < 5. We conclude that

m({x E E : I fj(x) - f(x)I > e for some j > N}) < 8.

Let A be this particular set EN. Then m(A) < 8 and

IR\A={xEE:Ifj(x)-f(x)I <Eforallj>N}.

There are three fundamental convergence results for the Lebesgue
integral. We shall now enunciate them, and we shall prove the first (in
fact the three of them are equivalent). Then we shall illustrate with
some examples.

The Lebesgue Dominated Convergence Theorem Let f j be mea-
surable functions on a set E of finite, positive measure. Suppose
that there is a constant M > 0 such that and 1 fj(x)I < M for
every j. If limj-,,., fj(x) exists for almost every x then

jlim f f j (x) dx = Jlirnf,(x)dx.



406 Chapter 14: Advanced Topics

The Lebesgue Monotone Convergence Theorem Let 0 < fi (x) <
f2(x) < be measurable functions Then

fi (x) dx.jlinn (fi (x) dx = j00

Fatou's Lemma Let fj be nonnegative, measurable functions on R.
Then

/ r

J lim f fj(x)dx < Iimi fJ fj(x)dx.j-00 j-00

Proof of the Lebesgue Dominated Convergence Theorem: Let
c > 0. By Proposition 14.9, there is an N > 0 and a measurable set
A C E with m(A) < E/[4M] such that, for j > N and x E E \ A, we
have I fj(x) - f(x)I < E/[2m(E)]. Then

fE
fj(x)dx-fE f(x)dxI =

e conclude thatW

ff(x) - f (x) dx

I fj(r) - f(x)I dx
fE

= E\A I.fj(x) - J (x) I dx

fj(x) - f(x)I dx+ fA I

E E2+2
= E.

LfixfEf(x)dx. In

fact there is a more general version of the Lebesgue Dominated
Convergence Theorem that is worth stating separately:

Theorem 14.5
Let g > 0 be an integrable function and suppose that fj are measurable
functions such that I fj(x)I < g(x) for every j and almost every x. If
limj-. fj(x) = f(x) almost everywhere then

jlim 1 fj(x)dx = ffilm fj(x)dx.00-00
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Example 14.26

If f is an integrable function then we define the Fourier trans-
form of f to be

T(o = f f (x) e` dx.

The function f is continuous. See Section 12.3.
To see this, fix t o E R. Observe that, if E -' r o then the

functions
x'-' f(x) . e'xl-I

all satisfy I f (x) e' 1 < f (x) I. Thus the hypothesis of the
(general) Lebesgue Dominated Convergence Theorem is satisfied
with g(x) = If (x) 1. We conclude that

3l
f f (x) - dx = J 'fim f (x) dx

or

slim A W = f (6)00

Thus f is continuous at to.

Example 14.27

Let f be an integrable function and suppose that

IA
f(x)dx=0

for each measurable set A. Let us show that f must be the zero
function.

Suppose not. For each c E R, c > 0, let SS _ {x e IR :

f (x) > c}. Then certainly SS is measurable. Hence

O=f f(x)dx> f
c 0 0, we conclude that r(SS) = 0. A similar result

holds for c < 0 and T, = {x E R : f (x) < c}. Thus f 0.

Example 14.28

Let
1 if 0<x<j

fj(x) = j
0 otherwise.
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Then it is plain to see that limj, fj(x) = 0 for 0 < x < 1.
But

10
f j (x) dx = 1

1

for all j. Thus the identity

jlirm J f j (x) dx =
00 -00

fails for these particular fj. Why do none of our three main
results in measure theory apply to this particular sequence of
functions? It is not the case that fl < f2 < .. so Lebesgue
Monotone Convergence does not apply. There is no integrable
function g such that I f 1 < g for all j, so Lebesgue Dominated
Convergence does not apply. We can in fact correctly apply
Fatou's lemma to see that

11 r1
0 = r liminf fj(x)dx < liminf

/
fj(x)dx = 1. 0

o j-00 j-O° oo

14.6 A Taste of Probability Theory
Probability dates back to the days of B. Pascal (1623 1662) and even
before, when gamblers wanted to anticipate the results of certain bets.
The subject did not develop apace, and was fraught with paradoxes and
conundrums. It was not until 1933, when A. N. Kolmogorov (1903-1987)
realized that measure theory was the correct language for formulating
probabilistic statements, that the subject could be set on a rigorous
footing (see [KOLJ). In this brief section we shall give just an indication
of how Kolmogorov's ideas work. This will provide the reader a nice
context for measure theory.

We have already learned in Section 14.5 about Lebesgue measure.
This is but one method for assigning a length to each set. There are
many other-indeed, uncountably many-methods for doing so. Just as
an instance, for each set S C R let

_ Oif 0¢S
Y(S) 1 if 0 E S.

The set-function p does not have all the properties of Lebesgue measure -
for example it is not translation invariant (µ([O,11) = 1 while µ([1, 2]) =
0). But it does have the crucial property of countable additivity: If
Si, S2, ... are disjoint sets then

(*)
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Also
µ(0) = 0. (**)

In what follows, we shall take (*) and (**) to be the defining properties
of a general, or "abstract" measure.

Proceeding a bit more formally, we recall from our study of Lebesgue
measure that not every set could be measured. We had to restrict at-
tention to a collection of sets that we called the measurable sets. Just
so, when we consider an abstract measure we must specify in advance
which sets we shall measure. A convenient device for performing this
task is the a-algebra. Let E C R be our universal set. Let M be a
collection of subsets of E. We say that M is a a-algebra if it is closed
under (i) countable union and (ii) complementation. It is automatic
that a a-algebra will contain the empty set and the entire space E (see
Exercise 52).

Example 14.29
The collection B of all Borel sets in IIt is a a-algebra. The
collection P of all subsets of R is a a-algebra. Let A be the
collection of all sets S of real numbers such that either S is
countable or `S is countable. Then A is a a-algebra.

Definition 14.18 Let M be a a-algebra of sets in JR. A measure on
M is a function 1i; M -+ [0, oo] such that

(i) µ(M) = 0;

(ii) if {S, } is a sequence of disjoint sets in M then µ(UrSj) = Ei° µ(SJ ).

Property (ii) is called the countable additivity property. We refer
to (R, M, µ) as a measure space. Sometimes it is convenient to refer to
just (iit, M) as the measure space.

Example 14.30

(a) Let M = the power set of R. Let

µ(s)= JOif 0¢S
1if0ES.

Then (It, M, µ) is a measure space.

(b) Let M be the Borel sets. Let u be Lebesgue measure. Then
(R, M, µ) is a measure space.
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(c) Let M be the sets S such that either S is countable or `S
is countable. For S E M, define p(S) to be 0 if S is countable
and 1 if °S is countable. Then (R, M, p) is a measure space.

Some fundamental properties of measures are summarized in the
following theorem.

Theorem 14.6
Let (R, .M, p) be a measure space. Then

(a) (Monotonicity) If E, F E 111 and E C F then p(E) < p(F).

(b) (Subadditivity) If {S3} C M. then p(Ui°S3) < E01` p(S3).

(c) (Continuity from below) If {S3} C M and S1 C S2 C_ ,

then p(UrS3) = limj-,.c p(S3).

(d) (Continuity from above) If {S3 M. Sl 2 S2 ) , and
µ(S1) < oo, then p(n °S3) = lim3 p(S3 ).

Proof: We shall prove part (b) and leave the other parts as exercises
for the reader.

Let T1 = S1 and set TA. = Sk \ (U
i
-1 S3) for k > 1. Then the sets

Tk are disjoint and U' T3 = Ui S3 for each it. Thus, by part (a),

x x x x
iz u`SJ = u uT3 =EN'(T3)

1 1 1

13

Now we may turn-briefly-to our study of probability. A probabil-
ity space is a measure space such that p(R) = 1. [In a full treatment of
probability theory, it is useful to consider a more general measure space
than R. However, for our brief treatment, we may restrict attention to
the real numbers. We will allow ourselves the flexibility of restricting
our treatment to a subset of R. See the next example.] A measurable set
(that is, an element of M) is called an event. A measurable, real-valued
function X is called a random variable. We call f Xdp the expected
value or mean of X, denoted by E(X). The number f [X - E(X)]2dp
is called the variance of X. The variance measures the deviation of X
from its mean.

Of course any subject in analysis is governed by the topologies that
are used. In probability theory it is useful to use "convergence in mea-
sure", which we now call "convergence in probability". Let f3 be a
random variable. We say that the f3 converge in probability (measure)
to a random variable f if, for each r > 0, p{x : off (x) - f (x) I > e} tends
to0asj-+oo.
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Example 14.31

Let k be a positive integer. Let M be the a-algebra consisting of
the intervals ((j-1)/2k, j/2k], 1 < j < 2k, k = 0,1,2,.... These
are the half-open, diadic intervals in (0,1]. Let p be ordinary
Euclidean length, or Lebesgue measure. Then ((0,1), M, p) is a
probability space. Observe that p((0,1]) = 1. This probability
space is a model for tosses of a fair coin. We think of the interval
(0, 1/2] as the event that the first toss of the coin is a head and
(1/2, 1] as the event that the first toss of the coin is a tail. Note
that each has measure 1/2. This tells us that each of these two
events has probability 1/2.

Now we think of

Event (set) Expectation measure))
0,14 1/4

14,12 1/4
12,3 14
34,1 1/4

the event (0, 1/4] corresponding to the first coin toss being a
head and the second coin toss being a head. The event (1/4,1/2]
corresponds to the first coin toss being a head and second coin
toss being a tail. The event (1/2,3/4] corresponds to the first
coin toss being a tail and the second coin toss being a head.
And so forth.

Example 14.32

Let M be the a-algebra of Borel sets. Let the probability space
F be the entire real line, and let the measure be p = e-P`'2 dx.
Thus, if E C R is a Borel set, then

411

µ(E) = E e-"s
z
dx.

This is the Gaussian probability for a normal distribution.

We say that a collection {Sa,}aEA of events (measurable sets) is
independent if

k
t r

Y (Sa, n ... n S«k) - p(Sa )

for all distinct al, ... ak E A. It is the notion of independence that
makes the study of probability theory distinct from the study of just
plain measure theory.



412 Chapter 14: Advanced Topics

Example 14.33
Let ((0,1],1V1,µ) be the probability space in Example 14.31.
The events (1/4,1/2] and (3/4,1] are not independent, as they
do not satisfy the conditions of the last definition. And they are
not independent intuitively, because the first event corresponds
to a first coin toss of heads and the second event corresponds to
a first coin toss of tails. These are obviously mutually exclusive
eventualities. If one occurs, then the other cannot occur.

Now consider a standard deck of 52 cards: ace through King
in each of the four suits clubs, diamonds, hearts, and spades.
We construct a probabilistic model for selecting a card at ran-
dom from a thoroughly shuffled deck. The probability space
is the interval (0,1] and the probability measure µ is ordinary
Lebesgue measure. Each card corresponds to one of the inter-
vals ((j - 1)/52, j/52], j = 1, ..., 52. For convenience we think
of the cards in their standard order: ace through King of clubs,
ace through King of diamonds, ace through King of hearts, and
ace through King of spades. The cards correspond to the inter-
vals in this sequence. The a-algebra is of course that generated
by the fifty-two intervals just indicated.

The event A that the selected card is a heart is the union of
thirteen of the little intervals. Thus µ(A) = 13/52. The event
B that the selected card is a Queen is the union of four of the
little intervals. Thus µ(B) = 4/52. Now we see that

µ(A n B) = (the probability of the event that
the selected card is the Queen of Hearts)

1

52
13 4

52 52

= N(A).L(B)

Thus we see that the events A and B are independent.

We conclude this discussion with two classic results from probability
theory.

Theorem 14.7 [The Weak Law of Large Numbers]
Let {X3 } be a sequence of independent, square-integrable random vari-
ables with means m1 and variances oJ2. If n-2 E a = 0, then

- m1) = 0 in probability.n-1 Ei (X,
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Theorem 14.8 [The Borel-Cantelli Lemma]
Let be asequence of events. If E' µ(S;) < oo then y(lim sup SI) _
0. If the sets S3 are independent and if Ei° µ(S,) = oo then we have
instead that p(lim sup S;) = 1.

We shall provide proofs of both these results, but first a brief dis-
cussion. There are many versions of the Law of Large Numbers. In
layman's terms, the Law of Large Numbers says that if you gamble (in
Las Vegas) you are bound to lose. More precisely, the conclusion of our
Weak Law of Large Numbers says that a collection of independent ran-
dom variables will tend to their means at a certain rate. So if you are
playing roulette in Las Vegas and if the odds of hitting the number "13"
are about 1 in 36, then in the long run you will only hit 13 about one
thirty-sixth of the time. You may have lucky streaks, or "runs", but in
the long run you will do no better than the odds dictate.

The Borel-Cantelli lemma is a bit more technical, but it addresses
similar issues. Suppose that we take the events S; to be Sl = [0,1/2),
S2 = [0, 1/4), S3 = [0, 1/8), etc. Then it is certainly true that E µ(SS) <
oo. The conclusion that A(lim sup S3) = 0 just says that the chances
that you will flip all heads, infinitely many times, are zero. The other
conclusion is similar in spirit.

Before we begin the proofs, we shall establish a technical result that
has some independent interest.

Lemma 14.5 [Chebyshev's Inequality]
Let f be a square-integrable function on IR with respect to the measure
p. Let a > 0. Then

µ({x ER:If(x)I >a})< f if(x)I2dp(x)
a2

Proof: Set F. = {x : If (x) > a}. Then

1 dti(x)p(F4,) _
fF.
f I f (a)12 dµ(x)

Q

a2 fIf(x)I2dp(x),

as was to be proved. 0
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Proof of the Weak Law of Large Numbers: The function

i(x) = n
E(Xj - rnj)
j=1

has mean 0 and variance equal to n-2 i oJ2 (Exercise: just calculate).
Thus, by Chebyshev's inequality, for any e > 0 we have

IU (

1 n

n E(Xj - µj)
j=1

n

> E < EOi -0(TE)2
j=1

asn --goo.

Proof of the Borel-Cantelli Lemma: Recall that lim supra-,O A.
fly 1 Un k An. It follows that

00

µ(limsupAn) < µ U An < µ(An)
n-oo

k n=k(no="

Of course the last sum tends to zero as k - oo under the condition that
E' µ(An) converges.

If instead E'µ(An) diverges and the events An are independent,
then we are obliged to show that

00

it (`(lim sup An)) = µ (0 `An )0.
n=k

In order to see this assertion, it suffices to show that µ(n k`An) = 0 for
each k. But we know that the events `An are independent (just because
the events An are-- -calculate this out as an exercise). It is obvious from
Taylor series (or the Mean Value Theorem) that 1 - t < e-t, hence (for
0 < k < K)

µ n 0An I = 11 (1 -µ(An)) <_ 11 e-µ(An) =exp (_kEp(An)

n=k f k k

Since the last expression tends to 0 as K - 00, the result follows.

Exercises
1. Let (X, p) be a metric space. Prove that the function

o(s, t) = P(5,0
1 + p(s,t)
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is also a metric on X and that the open sets defined by the metric
p are the same as the open sets defined by o. Finally prove that
o(s, t) < 1 for all 8, t E X.

2. Let (X, p) be a metric space, and E C X. Define the interior kof E to be those points e E E such that there exists an r > 0 with
B(e, r) C E. Prove that the interior of any set is open. Give an
example of a set in a metric space that is not equal to its interior.

3. Let (X, p) be a metric space and E a subset of X. Define the
boundary of E to be those elements x E X with the property that
every ball B(x, r) contains both points of E and points of CE.
Prove that the boundary of E must be closed. Prove that the
interior of E is disjoint from the boundary of E.

4. Let (X, p) be a metric space. Prove that the closure of any set in
X is closed. Prove that the closure of any E equals the union of
the interior and the boundary.

5. Let (X, p) be a metric space. Let Kl Q K2 ... be a nested family
of countably many nonempty compact sets. Prove that fl, K,, is a
nonempty set.

6. Give an example of a metric space (X, p), a point P E X, and a
positive number r such that W(P, r) is not the closure of the ball
B(P, r).

7. Let (X, p) be the collection of continuous functions on the interval
[0, 1] equipped with the usual supremum metric. Let Ej _ {p(x) :
p is a polynomial of degree not exceeding k}. Then, as noted in
the text, each Ej is nowhere dense in X. Yet U;E9 is dense in X.
Explain why these assertions do not contradict Baire's theorem.

8. Assume fj is a sequence of continuous, real valued functions on
R with the property that {f,(x)} is unbounded whenever x E Q.
Use the Category Theorem to prove that it cannot then be true
that whenever t is irrational then the sequence { f, (t)} is bounded.

9. Consider the space X of all integrable functions on the interval
[0, 1]. Define a metric, for f, g E X, by the equation

p(f,g) = f If(x) -g(x)Idx.'
0

Prove that this is indeed a metric. The set S of continuous func-
tions lies in X; we usually equip S with the supremum metric.
How does the supremum metric compare with this new metric?
Show that S is dense in X.
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10. Let (X, p) be a metric space. Let f : X - R be a function. Prove
that f is continuous if and only if f -1(U) is open whenever U C R
is open.

11. Let (X, p) be a compact metric space. Prove that X has a count-
able dense subset. [We call such a space separable.]

12. Let K be a compact subset of a metric space (X, p). Let P E X
not lie in K. Prove that there is an element k c K such that

p(k, P) = inf p(x, P) .
xEK

13. Consider the metric space Q equipped with the Euclidean metric.
Give an example of a set in this metric space that is closed and
bounded but is not compact.

14. Consider the metric space Q equipped with the Euclidean metric.
Describe all the open sets in this metric space.

15. A certain metric space has the property that the only open sets
are singletons. What can you conclude about this metric space?

16. In R, if I is an open interval then every element of I is a limit
point of I. Is the analogous statement true in an arbitrary metric
space, with "interval" replaced by "ball?"

17. The Bolzano-Weierstrass Theorem tells us that in R1 a bounded
infinite set must have a limit point. Show by example that the
analogous statement is false in an arbitrary metric space.

18. Let (X, p) and (Y, a) be metric spaces. Describe a method for
equipping the set X x Y with a metric manufactured from p and
a.

19. Refer to Exercises 2-4 for terminology. Let E be a subset of a
metric space. Is the interior of E equal to the interior of the closure
of E? Is the closure of the interior of E equal to the closure of E
itself?

20. Let X be the collection of all continuously differentiable functions
on the interval [0, 1]. If f, g E X then define

p(f,g) = sup If`(x) - 9 (x)I
xE[0,1)

Is p a metric? Why or why not?
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21. Let (X, p) be a metric space. Call a subset E of X connected
if there do not exist open sets U and V in X such that u fl E
and V fl E are nonempty, disjoint, and (U fl E) U (V fl E) = E.
Is the closure of a connected set connected? Is the product of
two connected sets connected? Is the interior of a connected set
connected?

22. Refer to Exercise 21 for terminology. Give exact conditions that
will guarantee that the union of two connected sets is connected.

23. Consider a collection F of differentiable functions on the interval
[a, b] that satisfy the conditions f (x) < K and If (x) I < C for all
x E [a, b]. Demonstrate that the Ascoli-Arzela theorem applies to
F and describe the resulting conclusion.

24. Even if we did not know the transcendental functions sin x, cosx, In x,
ex, etc. explicitly, the Baire Category Theorem demonstrates that
transcendental functions must exist. Explain why this assertion is
true.

25. Refer to Exercise 9 for definitions and for the metric to be used
here. On this metric space, define

T:X -iR

by the formula
i

T(f) =1 f(x)dx.
0

Is T a continuous function from X to R?

26. Let (X, p) be the metric space of continuously differentiable func-
tions on the interval [0, 1] equipped with the metric

p(f, 9) = sup If(x) - 9(x)I
xE10,1]

Consider the function

T(f) =

Is T continuous? Is there some metric with which we can equip X
that will make T continuous?

27. Prove Lemma 14.1.

28. Complete the first part of the proof of Proposition 14.3.
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29. Let (X, p) be a metric space and let {xj } be a Cauchy sequence in
X. If a subsequence {xjk} converges to a point P E X then prove
that the full sequence {xj} converges to P.

30. Prove the converse direction of Theorem 14.1.

31. Give a proof of Proposition 14.4 that uses the sequential definition
of compactness.

32. Let {p(x)} be a sequence of polynomial functions on the real line,
each of degree not exceeding k. Assume that this sequence con-
verges pointwise to a limit function f. Prove that f is a polynomial
of degree not exceeding k.

33. Let (X, p) be any metric space. Consider the space X of all Cauchy
sequences of elements of X, subject to the equivalence relation
that {xj} and {yj} are equivalent if p(xj, yj) 0 as j - oo.
Explain why, in a natural way, this space of equivalence class of
Cauchy sequences may bethought of as the completion of X, that
is, explain in what sense X D X and X is complete. Prove that X
is minimal in a certain sense. Prove that if X is already complete
then this space of equivalence classes can be identified in a natural
way with X.

34. Prove that the "Dirichlet function"

AX)(x) _ 0 if x is rational
1 if x is irrational

is not Riemann integrable. But it is Lebesgue integrable.

35. Let f be a Lebesgue integrable function on R. Let c > 0. Prove
that there is a continuous function (p which vanishes outside a
compact set such that f I <p(x) - f (x) I dx < e.

36. Let E be a measurable set of finite measure. Let f > 0. Prove that
there is an open set U containing E such that m(U \ E) < e.

37. Refer to Exercise 37. Let E be a measurable set of finite measure.
Let e > 0. Prove that there is a compact set K contained in E
such that m(E \ K) < e.

38. Prove that every Riemann integrable function is Lebesgue inte-
grable.

*

39. Let f be a nonnegative, integrable function. Prove that

rrNN

R
lim

N-. f N
f(x)dx.
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For each N define gN (x) = min{ f (x), N}. Prove now that

limo f fN (x) dx = fR f (x)N-o R

40. Let f be a nonnegative, integrable function. Prove that the new
function

F(x) = jf(t)dt

is continuous at every x.

41. Let fj be a sequence of nonnegative, integrable functions on R. As-
sume that f3 (x) - f (x) pointwise for almost every x and also that
we have f f,, (x) dx --> f f (x) dx. Prove that, for any measurable
set E, fE f7 (x) dx - fE f (x) dx.

42. Let f be an integrable function. Then show that If I is also inte-
grable and

1

Jf(x)dxj < f If(x)I dx.

43. Suppose that ff are integrable functions and that f, (x) - f (x)
almost everywhere. Prove that

f If(x)- fi (x) I dx - 0 if and only if J1f2(x)Idx-s JIf(x)Idz.

44. Lebesgue measure on R is characterized by these properties: (1)
The Lebesgue measure of the unit interval is 1, (ii) If E is a mesr
surable set of finite measure and a E R then m(E + a) = m(E) in
an obvious sense. Discuss this assertion, and how to prove it.

45. Suppose that fl is Lebesgue integrable and that fl >_ f2 ? f3 >_

0 for measurable functions fl, f2,. . .. Discuss lim9 f fi (x) dx.

46. Suppose that E C R is a set of positive measure. Define E + E =
{x + y: x E E, y E E}. Prove that E+ E contains a nontrivial
open interval.

47. If f is a measurable function and g is a measurable function then
prove that f + g and f g are measurable.

* 48. Lebesgue's theorem says that a bounded function f on the interval
[a, b] is Riemann integrable if and only if the set of points of dis-
continuity of f has measure 0. Prove Lebesgue's theorem. [Hint:
Define a concept of "upper envelope" of f, and use this device to
prove the result.]
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49. Prove parts (a), (c); (d) of Theorem 14.6.

50. Under the hypotheses of the Weak Law of Large Numbers, prove
that the function

1
1(x) = E(Xj - mj)

j=1

has variance equal to n-2 En
i a1.

51. Prove that if Aj are independent events then cAj are independent.

52. Let M be a a-algebra on a set E C R. Prove that M contains the
full set E and also contains 0.

53. Consider the probability space on the interval (0, 1] with a-algebra
generated by the four intervals ((j - 1)/4, j/4], j = 1, 2. 3, 4. De-
scribe three events with the property that any two of them are
independent, but the three events are not independent.

54. Prove that if Xj are random variables with variances aj and if
E j-Zai < oo then limj_"O j-2 ,1

0,
2 =0.

55. Prove Chebyshev's inequality with "square integrable" replaced by
:,pth-power integrable", 0 < p < oo.

56. In the Weak Law of Large Numbers, one can replace the hypothesis
of independence of the random variables by the weaker hypothesis
that E[(Xj - mj)(Xk - Mk)] = 0 for j 54 k. Verify this assertion.
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A Glimpse of Wavelet Theory

15.1 Localization in the Time and Space Variables
The premise of the new versions of Fourier analysis that are being devel-
oped today is that sines and cosines are not an optimal model for some
of the phenomena that we want to study. As an example, suppose that
we are developing software to detect certain erratic heartbeats by anal-
ysis of an electrocardiogram. [Note that the discussion that we present
here is philosophically correct but is over-simplified to facilitate the ex-
position.] The scheme is to have the software break down the patient's
electrocardiogram into component waves. If a wave that is known to be
a telltale signal of heart disease is detected, then the software notifies
the user.

A good plan, and there is indeed software of this nature (developed
here at Washington University) in use across America. But let us imag-
ine that a typical electrocardiogram looks like that shown in Figure 15.1.
Imagine further that the aberrant heartbeat that we wish to detect is
the one in Figure 15.2.

What we want the software to do is to break up the wave in Figure
15.1 into fundamental components, and then to see whether one of those
components is the wave in Figure 15.2. Of what utility is Fourier theory
in such an analysis? Fourier theory would allow us to break the wave
in Figure 15.1 into sines and cosines, then break the wave in Figure
15.2 into sins and cosines, and then attempt to match up coefficients.
Such a scheme will tend to be dreadfully inefficient, because sins and
cosines have nothing to do with the waves we are endeavoring to analyze.
It would therefore be computationally expensive, and thus infeasible to
use in practice.

The Fourier analysis of sinVs and cosines arose historically because
sines and cosines are eigenfunctions for the wave equation (see Chap-
ter 11). Their place in mathematics became even more firmly secured
because they are orthonormal in L2-that is to say, the integration of
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a sine function against a cosine function, or of the product of two sine
functions of different frequency, or of the product of two cosine functions
of different frequency, is 0. They also commute with translations in nat-
ural and useful ways. The standard trigonometric relations between the
sine and cosine functions give rise to elegant and useful formulas-such
as the formulas for the Dirichlet kernel and the Poisson kernel. Sines
and cosines have played an inevitable and fundamental historical role in
the development of harmonic analysis.

In the same vein, translation-invariant operators have played an im-
portant role in our understanding of how to analyze partial differential
equations (see [KRA3]), and as a Vtep toward the development of the
more natural theory of pseudodifferential operators. Today we find our-
selves studying translation noninvariant operators-such as those that
arise in the analysis on the boundary of a (smoothly bounded) domain
in R2 (see Figure 15.3).

The next, and current, step in the development of Fourier analysis
is to replace the classical sine and cosine building blocks with more
flexible units-indeed, with units that can be tailored to the situation
at hand. Such units should, ideally, be localizable-i.e., each wavelet
should vanish outside of a compact set. In this way they can more
readily be tailored to any particular application. This, roughly speaking,
is what wavelet theory is all about.

In a book of this nature, we clearly cannot develop the full assem-
blage of tools that are a part of modem wavelet theory. [See [HERG],
[MEY1], [MEY2], [DAU] for more extensive treatments of this beauti-
ful and dynamic subject. The papers [STR] and [WAL] provide nice
introductions as well.] What we can do is to give the reader a taste.
Specifically, we shall develop a Multi-Resolution Analysis, or MRA; this
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study will show how Fourier analysis may be carried out with localiza-
tion in either the space variable or the Fourier transform (frequency)
variable. In short, the reader will see how either variable may be lo-
calized. Contrast this notion with the classical construction, in which
the units are sines and cosines-clearly functions which do not have
compact support-or else characters x F-+ e="F, which suffer the same
liability. The exposition here derives from that in [HERG], [STR], and
[WAL].

As we have said earlier, this chapter makes special demands on the
reader. We simply cannot be as methodical and rigorous as the standard
set earlier in the book. We will demand an occasional suspension of dis-
belief from the reader. We will refer to ideas that will not be completely
developed in the present text. But we hope that this gentle introduction
will serve as an invitation for the reader to engage in further exploration
of the enticing topic of wavelet analysis.

15.2 A Custom Fourier Analysis
Typical applications of classical Fourier analysis are to

F4'eyuency Modulation: Alternating current, radio transmission;

Mathematics: Ordinary and partial differential equations, analysis
of linear and nonlinear operators;

Medicine: Electrocardiography, magnetic resonance imaging, bio-
logical neural systems;

Optics and Fiber-Optic Communications: Lens design, crystallog-
raphy, image processing;

Radio, Television, Music Recording: Signal compression, signal
reproduction, filtering;

Image Processing: Image compression, image filtering, image de-
sign;

Spectral Analysis: Identification of compounds in geology, chem-
istry, biochemistry, mass spectroscopy;

Telecommunications: Transmission and compression of signals, fil-
tering of signals, frequency encoding.

In fact, the applications of Fourier analysis are so pervasive that they
are part of the very fabric of modem technological life.

The applications that are being developed for wavelet analysis are
very similar to those just listed. But the wavelet algorithms give rise to
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faster and more accurate image compression, faster and more accurate
signal compression, and better denoising techniques that preserve the
original signal more completely. The applications in mathematics lead,
in many situations, to better and more rapid convergence results.

What is lacking in classical Fourier analysis can be readily seen by
examining the Dirac delta mass. Let us use a little physical intuition
to understand the situation. We know the Dirac mass as the functional
that assigns to each continuous function with compact support its value
at 0:

Physicists like to think of the Dirac mass as a "generalized function"
that takes the value +oo at the origin and is identically 0 everywhere
else. [In practice, we will approximate the Dirac function by a piecewise-
linear function that takes the value N, for N very large, on the interval
[-1/(2N),1/(2N)] and is zero elsewhere-see Figure 15.4.]

It is most convenient to think of this functional as a measure:

f O(x)d8(x) = 0(0)

Now suppose that we want to understand 5 by examining its Fourier
transform. For simplicity, restrict attention to RI:

do(t) = et° 1.
a

In other words, the Fourier transform of S is the constant, identically
1, function. To recover 5 from its Fourier transform, we would have to
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make sense of the inverse Fourier integral (see the Appendix to Section
12.3)

1 1 C'" dt.
27r

Doing so requires a careful examination of the methods of Fourier
summation, and certainly strains the intuition: why should we have to
"sum" exponentials, each of which is supported on the entire line and
none of which is in any LP class for 1 < p < oc, in order to re-construct
6-which is supported just at the origin?

The point comes through perhaps even more strikingly by way of
Fourier series. Consider the Dirac mass b supported at the origin in the
circle group T. Then the Fourier-Stieltjes coefficients of b are

nb(j)-2 a

Thus recovering b from its Fourier series amounts to finding a way to
sum the formal series

or,
1

27r

in order to obtain the Dirac mass. Since each exponential is supported
on the entire circle group, the imagination is defied to understand how
these exponentials could sum to a point mass. [To be fair, the physicists
have no trouble seeing this point: at the origin the terms all add up,
and away from zero they all cancel out.]

The study of the point mass is not merely an affectation. In a radio
signal, noise (in the form of spikes) is frequently a sum of point masses
(Figure 15.5). On a phonograph record, the pops and clicks that come
from imperfections in the surface of the record exhibit themselves (on
an oscilloscope, for instance) as spikes. or point masses.

For the sake of contrast, in the next section we shall generate an
ad hoc family of wavelet-like basis elements for the square-integrable
functions and show how these may be used much more efficiently to
decompose the Dirac mass into basis elements.

15.3 The Haar Basis
In this section we shall describe the Haar wavelet basis. While the basis
elements are not smooth functions (as wavelet basis elements usually
are), they will exhibit the other important features of a Multi-Resolution
Analysis (MRA). In fact we shall follow the axiomatic treatment as
developed by S. Mallat and exposited in [WAL] in order to isolate the
essential properties of an MRA.
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Figure 15.5

We shall produce a dyadic version of the wavelet theory. Certainly
other theories, based on other dilation paradigms, may be produced.
But the dyadic theory is the most standard, and quickly gives the flavor
of the construction. In this discussion we shall use the notation as to
denote the dilate of a function: a6 f (x) = f (ax). And we shall use the
notation Ta to denote the translate of a function: Ta f (x) = f (x - a).

We work on the real line R. Our universe of functions will be the
square-integrable functions, which we denote by L2(R). Thus

f E L2(IR) if and only if J I f (x)12 dx < oo .

Define

and

fi(x=X[o,l)(x)W
l if x E [0, 1)

= 0 ifxV[0,1).

V,(x) = 0(2x) - 0(2x - 1) = X[0,1/2)(X) - X[1/2,1)(x)

We call a function of the form XA-which takes the value 1 on the set A
and 0 elsewhere-a characterastac function. The function i is exhibited
in Figure 15.6.

The function 0 will be called a scaling function and the function V)
will be called the associated wavelet. The basic idea is this: translates
of 0 will generate a space Vo that can be used to analyze a function f
on a large scale-more precisely, on the scale of size 1 (because 1 is the
length of the support of 0). But the elements of the space Vo cannot
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be used to detect information that is at a scale smaller than 1. So we
will scale the elements of Vo down by a factor of 2?, each j = 1, 2, ...,
to obtain a space that can be used for analysis at the scale 2_J (and we
shall also scale Vo up to obtain elements that are useful at an arbitrarily
large scale). Let us complete this program now for the specific q that
we have defined above, and then present some axioms that will describe
how this process can be performed in a fairly general setting.

Now we use 0 to generate a scale of function spaces { Vi }i EZ. We
set

Vo= {ak[Tk4JF, : Ia kI2 <cc}
kEZ

for th e particular function 6 that was specified above. Of course each
element of Vo so specified lies in L2 (because the functions Tk¢ have
disjoint supports). But it would be wrong to think that Vo is all of
L2, for an element of Vo is constant on each interval [k, k + 1), and
has possible jump discontinuities only at the integers. The functions
{TkO}kEZ will form an orthonormal basis (with respect to the L2 inner
product) for Vo. This means that

IR
(Tjr(x))(Tkqi(x)) dx = 0 when j # k

and that

J ITjo(x)I2 dx = 1 for all j



15.3 The Haar Basis 429

and that the {TjO} can be used to generate, via linear combinations, all
the elements of L2.

Now let us say that a function g is in V1 if and only if a1/2g lies in V0.
Thus g E V1 means that g is constant on the intervals determined by the
lattice (1/2)Z = {n/2 : n E Z} and has possible jump discontinuities
only at the elements of (1/2)Z. It is easy to see that the functions
{ fa2TkO} form an orthonormal basis for V1.

Observe that Vo C V1 since every jump point for elements of Vo
is also a jump point for elements of V1 (but not conversely). More
explicitly, we may write

TkO = a2T2kq5 + a2T2k+1q

thus expressing an element of Vo as a linear combination of elements of
V1.

Now that we have the idea down, we may iterate it to define the
spaces V) for any j E Z. Namely, for j E Z, Vj will be generated by
the functions a2i T,,,0, all m E Z. In fact we may see explicitly that an
element of Vj will be a function of the form

,! = EafX[e/2J,It+1J/2J)
IEZ

where F, JaeJ2 < oo. Thus an orthonormal basis for Vj is given by
{29/2a2,Tm'O}mEZ

Now the spaces Vj have no common intersection except the zero
function. This is so because, since a function f E f1JEZVJ would be
constant on arbitrarily large intervals (of length 2'J for j negative), then
it can only be in L2 if it is zero. Also UjEZVj is dense in L2 because
any L2 function can be approximated by a simple function (i.e., a finite
linear combination of characteristic functions), and any characteristic
function can be approximated by a sum of characteristic functions of
dyadic intervals.

We therefore might suspect that if we combine all the orthonormal
bases for all the Vj, j E Z, then this would give an orthonormal basis
for L2. That supposition is, however, incorrect. For the basis elements
0 E Vo and a2jToO E Vj are not orthogonal. This is where the function
0 comes in.

Since Vo C Vl we may proceed by trying to complete the orthonor-
mal basis {Tko} of Vo to an orthonormal basis for V1. Put in other words,
we write V1 = Vo ® Wo, and we endeavor to write a basis for Wo. Let
zP = a2q5 - a2T10 be as above, and consider the set of functions {T,,,tp}.
Then this is an orthonormal set. Let us see that it spans Wo.
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Let h be an arbitrary element of Wo. So certainly h E V1. It follows
that

h = E bja2Tj(p
j

for some constants {bj} that are square-summable. Of course h is con-
stant on the interval [0, 1/2) and also constant on the interval [1/2, 1).
We note that

fi(t) = 2 [O(t) + '(t)[ on [0, 1/2)

and

0(t) = 2 [4(t) - z/i(t)] on [1/2, 1).

It follows that

NO _ (bo+bI)()(t)+(bo_b1))(t)

on [0, 1). Of course a similar decomposition obtains on every interval
[j,j+1).

As a result,
h = CjTjO + djTjiP,

jEZ jEZ

where
Cj = bj +2 j+l and dj = bj

2
j+1

Note that h E Wo implies that h E Vol. Also every Tj4 is orthogonal
to every Tk o. Consequently every coefficient cj = 0. Thus we have
proved that h is in the closed span of the terms rj?p. In other words, the
functions {Tj4P}jEZ span Wo.

Thus we have V1 = Vo ® Wo, and we have an explicit orthonormal
basis for Wo. Of course we may scale this construction up and down to
obtain

Vj+1 = V j E D (*)j

for every j. And we have the explicit orthonormal basis {2j"2a2. TmV1}-EZ
for each Wj.

We may iterate the equation (*)j to obtain

Vj+1 = Vj q) Wj = Vj-1 ® W)_1 ® Wj
=Vo®Wo®Wl®...®Wj-1®Wj.

Letting j -ti +oo yields
or,

L2=VoWj.
j=0

(*)
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But a similar decomposition may be performed on Vo, with Wj in
descending order:

Vo=V_1®W-1=...=V 1sW t®...®W_1.

Letting t -- +oo, and substituting the result into (*), now yields that

L2 = ® Wj.
jEZ

Thus we have decomposed L2 (R) as an orthonormal sum of Haar wavelet
subspaces. We formulate one of our main conclusions as a theorem:

Theorem 15.1
The collection

N=Sa21TmV):m,jEz}

is an orthonormal basis for L2, and will be called a wavelet basis for L2.

Now it is time to axiomatize the construction that we have just per-
formed in a special instance.

Axioms for a Multi-Resolution Analysis (MRA)

A collection of subspaces {Vj} FEZ of L2(k) is called a Multi-Resolution
Analysis or MRA if

MRAI (Scaling) For each j, the function f E Vj if and only if
a2f E Vj+1;

MRA2 (Inclusion) For each j, Vj C Vj+1;

MRA3 (Density) The union of the Vjs is dense in L2:

closure U Vi = L2(III);
jEZ

MRA4 (Maximality) The spaces Vi have no nontrivial common in-
tersection:

n vi = {o};

MRA5 (Basis) There is a function ¢ such that {rjO}jEZ is an or-
thonormal basis for Va.
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We invite the reader to review our discussion of ¢ = Xlo,1) and its
dilates and confirm that the spaces V1 that we constructed do indeed
form an MRA. Notice in particular that, once the space V0 has been
defined, then the other Vj are completely and uniquely determined by
the MRA axioms.

15.4 Some Illustrative Examples
In this section we give two computational examples that provide con-
crete illustrations of how the Haar wavelet expansion is better behaved-
especially with respect to detecting local data-than the Fourier series
expansion.

Example 15.1

Our first example is quick and dirty. In particular, we cheat a
bit on the topology to make a simple and dramatic point. It
is this: if we endeavor to approximate the Dirac delta mass b
with a Fourier series, then the partial sums will always have a
slowly decaying tail that extends far beyond the highly localized
support of b. By contrast, the partial sums of the Haar series
for b localize rather nicely. We will see that the Haar series has
a tail too, but it is small.

Let us first examine the expansion of the Dirac mass in
terms of the Haar basis. Properly speaking, the idea of expand-
ing the Dirac mass (Figure 15.7a) in terms of an L2 basis is not
feasible because the Dirac mass does not lie in L2. Instead let
us consider, for N E N, functions

IN = 2NXlo,1/2N)

The functions fN each have mass 1, and it can be shown that
the sequence { fN dx} converges to the Dirac mass 6 in a certain
weak sense (known at the "weak-* topology") that is used in
advanced studies in analysis.

First, we invite the reader to calculate the ordinary Fourier
series, or Fourier transform, of IN (see also the calculations at
the end of this example). Although (by the Riemann-Lebesgue
lemma) the coefficients die out, the fact remains that any fi-
nite part of the Fourier transform, or any partial sum of the
Fourier series, gives a rather poor approximation to IN. Af-
ter all, any partial sum of the Fourier series is a trigonometric
polynomial, and any trigonometric polynomial has support on
the entire interval [0, 27r]. In conclusion, whatever the merits
of the approximation to IN by the Fourier series partial sums,
they are offset by the unwanted portion of the partial sum that
exists off the support of IN. [For instance, if we were endeav-
oring to construct a filter to remove pops and clicks from a
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musical recording, then the pop or click (which is mathemati-
cally modeled by a Dirac mass) would be replaced by the tail of
a trigonometric polynomial-which amounts to undesired low
level noise or hiss, as in Figure 15.7b.]

Now let us do some calculations with the Haar basis. Fix
an integer N > 0. If j > N, then any basis element for Wj will
integrate to 0 on the support of fN just because the basis ele-
ment will be 1 half the time and -1 half the time on each dyadic
interval of length 2-j. If instead j < N, then the single basis
element µj from Wj that has support intersecting the support
of IN is in fact constantly equal to 2j/2 on the support of IN.
Therefore the coefficient bj of pj in the expansion of IN is

/2-N

bj = f fN(x),uj (x) dx = 2N J 2j/2 dX = 2j/2.
0

Thus the expansion for IN is, for 0 < x < 2-N,

N-1 0 N-1
E 2jl2pj(x) = E 2j/2.2j/2+ E 2j/2 . 21/2

j=-00 j=-00 j=1

=2+(2N-2)
= 2N

fN(x)

Notice here that the contribution of terms of negative index in
the series-which corresponds to "coarse scale" behavior that



434 Chapter 15: A Glimpse of Wavelet Theory

Y

Figure 15.7b

is of little interest-is constantly equal to 2 (regardless of the
value of N) and is relatively trivial (i.e., small) compared to the
interesting part of the series (of size 2' - 2) that comes from
the terms of positive index.

If instead 2-N < x < 2-N+1, then tiN_1(x) = -2(N-1)/2

and bN_IAN_I(x) = -2N-1; also

N-2 N-2
E bjuj(x) _ E 2j=2N-1.

j=-00 j=-00

Of course bj = 0 for j > N. In summary, for such x,

00

E bjµj(x) = 0 = fN(x)

A similar argument shows that if 2-e < x < 2-1+1 for -oo <
f < N, then E bjuj(x) = 0 = fN(x). And the same result holds
ifs <0.

Thus we see that the Haar basis expansion for IN converges
pointwise to fN. More is true: the partial sums of the series
give a rather nice approximation to the function IN. Notice, for
instance, that the partial sum SN_1 = EN -1N+1 bjµj has the
following properties:

(a) SN_1(x) = fN(x) - 2-N+1 for 0 < x < 2-N;
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Figure 15.8a

(b) SN_1(x) = 0 for -2-N < x < 0;

(c) SN_1(x)=0 forIxI>2;

(d) ISN-i(x)I < 2'N+1 for 2'N < IxI < 2.

Figures 15.8a, 15.8b use the software FAWAV by J. S. Walker
([WAL]) to illustrate partial sums of both the Fourier series
(with 48 terms) and the Haar series (with only 19 terms) for
the Dirac mass.

The perceptive reader will have noticed that the Haar se-
ries does not give an entirely satisfactory approximation to our
function IN, just because the partial sums each have mean-
value zero (which fN most certainly does not!). Matters are
easily remedied by using the decomposition

00

L2=V0®®W,
0

instead of the decomposition
00

L2 = ® W,
-00

that we have been using. For, with (**), Vo takes care of the
coarse scale behavior all at once, and also gets the mean-value
condition right.
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Thus we see, in the context of a very simple example, that
the partial sums of the Haar series for a function that closely
approximates the Dirac mass at the origin give a more accurate
and satisfying approximation to the function than do the partial
sums of the Fourier series. To be sure, the partial sums of the
Fourier series of each IN tend to that IN, but the oscillating
error persists no matter how high the degree of the partial stun.
The situation would be similar if we endeavored to approximate
fN by its Fourier transform.

We close this discussion with some explicit calculations to
recap the point that has just been made. It is easy to calculate
that the jth Fourier coefficient of the function fN is

8ZN-1

P.
t/2"'

1IN (j) = j _i.

Therefore, with SM denoting the Mth partial sum of the Fourier
series,

UN - Sh1IIL2
ZN-t

= L \
/2

Ie-=i/2N _ 112.
jirlil>M

Imitating the proof of the integral test for convergence of series,
it is now straightforward to see that

IIfN-SMIIL2M.
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In Short, I I fN - SM I I L2 - 0, as M oo, at a rate comparable
to M-1"2, and that is quite slow.

By contrast, if we let Htif = >l.il<< f 2'/2,i then, for M >-
N - 1, our earlier calculations show that

-M-1
II fN -

H,&1112. = E 2i = 2-1bf

.1=-00

Therefore I I fN - HM II L2- 0, as M - oo, at a rate comparable
to 2-M/2, or exponentially fast. This is a strong improvement
over the convergence supplied by classical Fourier analysis. O

Our next example shows quite specifically that Haar series can beat
Fourier series at their own game. Specifically, we shall approximate the
function g(x) - [coszrx] X(o,11(x) both by Haar series and by using the
Fourier transform. The Haar series will win by a considerable margin.
[Note: A word of explanation is in order here. Instead of the function g,
we could consider h(x) - [cos7rxJ . X(0,21 (X)- Of course the interval [0,2]
is the natural support for a period of the trigonometric function Cos Trx,
and the (suitably scaled) Fourier series of this function h is just the
single term cos 7rx. In this special circumstance Fourier series is hands
down the best method of approximation just because the support of
the function is a good fit to the function. Such a situation is too artificial,
and not a good test of the method. A more realistic situation is to chop
off the cosine function so that its support does not mesh naturally with
the period of cosine. That is what the function g does. We give Fourier
every possible chance: by approximating with the Fourier transforwrm, we
allow all possible frequencies, and let Fourier analysis pick those that
will best do the job.)

Example 15.2

Consider g(x) = [eosirx] X(o,11(x) as a function on the entire
real line. We shall compare and contrast the approximation of
g by partial sums using the Haar basis with the approximation
of g by "partial sums" of the Fourier transform. Much of what
we do here will be traditional hand work; but, at propitious
moments, we shall bring the computer to our aid.

Let us begin by looking at the Fourier transform of g. We
calculate that

j1

2

1(eiR2 + a 'Ax)e`t'{ dx

-e'f -I -e'{ - 1
2 Li(+x) + i(-s')
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-et - 1
= 7r2)

Observe that the function g is continuous on all of IR and
vanishes at, oo. The Fourier inversion formula then tells us that
g may be recovered from by the integral

1 f g(e)e-`r .

27r

Fourier theory has advanced summation techniques that would
allow us effectively to implement the idea of summation in the
present context. We cannot provide the details here. It is more
in the spirit of the present discussion (and also computationally
easier) to consider the limit of the integrals

77N (X) =
21r fINN

as N +oo. Elementary calculations show that (**) equals

77N(x)
1

N oof g(t)etft dt e`4 dd
f0c27r N

1 N

=
27r

J9tf ddt
N

1 t
N

f g(t) 1
e`F(t-=) I - dt

27ri 0 t - .r N

g(t) 1 [evN(t-z) - et(-N)(t-z)l dt
27ri 0 t - x LJ

1

21ri f g(t) t 1
x

2z sin N(t - x) dt
0

= 1
f t 9(t)

sin N(x - t)
dt

7r o .r-tfi

1 cos rt
sin N(x - t)

dt.
7r x - t

We see, by inspection of (**), that 77N is a continuous, indeed
an analytic fitnction. Thus it is supported on the entire real line
(not on any compact set). Notice further that it could not be
the case that 7]N = O(IxI-r) for some r > 1; if it were, then
77N would be in L' (R) and then 7jN would be continuous (which
it is certainly not). It turns out (we omit the details) that in
fact 77N = O(IxI -t). This statement says, in a quantitative way,
that 77N has a tail.
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We can rewrite formula (***) (the last item in our long
calculation) in the form

71N(x) = ir f g(t)DN(x - t) dt,
R

where
sin Nt

DN(t) _
7rt

The astute reader will realize that the kernel DN is quite similar
to the Dirichlet kernel that we studied in Section 12.2 in connec-
tion with Fourier series. A proof analogous to ones we consid-
ered there will show that I7N(x) --+ g(x) pointwise as N -i oo.

Figure 15.9a

Our calculations confirm that the Fourier transform of g can
be "Fourier-inverted" (in the L2 sense) back to g. But they also
show that, for any particular N > 0 large, the expression

17N(x) = 2 f N
N

is supported (i.e., is nonzero) on the entire real line. Thus, for
practical applications, the convergence of 17N tog on the support
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[0, 1] of g is seriously offset by the fact that riN has a "tail" that
persists no matter how large N. And the key fact is that the tail
is not small. This feature is built in just because the function
we are expanding has discontinuities.

We now contrast the preceding calculation of the Fourier
transform of the function g(x) = [cosirx] k[o.1l(x) with the
analogous calculation using the Haar basis (but we shall per-
form these new calculations with the aid of a computer). The
first thing that we will notice is that the only Haar basis elements
that end up being used in the expansion of g are those basis ele-
ments that are supported in the interval [0, 1]. For the purposes
of signal processing, this is already a dramatic improvement.

Figure 15.9b

Figure 15.9a shows the Fourier series approximation (us-
ing Walker's software FAWAV) to the function g. Figure 15.9b
shows the Haar series approximation to g (which is so accurate
that it is virtually indistinguishable from the function). No-
tice that the Fourier series approximation loses control near the
endpoints of the interval [0, 1]. By contrast, the approximation
given by Haar series is quite tame and gives a good approxima-
tion on the entire interval. In both figures, the series approxima-
tion is superimposed over the actual graph of g -just so that one
can more readily appreciate the accuracy of the approximation.

More precisely, the Haar series partial sums are supported
on [0, 11 (just like the function g) and they converge uniformly
on [0, 1) to g (exercise). Of course the Haar series is not the
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final solution either. It has good quantitative behavior, but
its qualitative behavior is poor because the partial sums are
piecewise constant (i.e., jagged) functions. We thus begin to see
the desirability of smooth wavelets. 0

Part of the reason that wavelet sums exhibit this dramatic improve-
ment over Fourier sums is that wavelets provide an "unconditional basis"
for many standard function spaces (see [HERG, p. 233 ff.). Briefly, the
advantage that wavelets offer is that we can select only those wavelet ba-
sis functions whose supports overlap with the support of the function be-
ing approximated. This procedure corresponds, roughly speaking, with
the operation of rearranging a series; such rearrangement is possible for
series formed from an unconditional basis, but not (in general) with
Fourier series.

15.5 Closing Remarks
We summarize the very sketchy presentation of the present chapter by
pointing out that an MRA (and its generalizations to wavelet packets
and to the local cosine bases of Coifman and Meyer [HERG]) gives a
"designer" version of Fourier analysis that retains many of the favor-
able features of classical Fourier analysis, but also allows the user to
adapt the system to problems at hand. We have given a construction
that is particularly well adapted to detecting spikes in a sound wave,
and therefore is useful for denoising. Other wavelet constructions have
proved useful in signal compression, image compression, and other engi-
neering applications.

In effect, wavelet analysis has caused harmonic analysis to re-invent
itself. Wavelets and their generalizations are a powerful new tool that
allow localization in both the space and phase variables. They are useful
in producing unconditional bases for classical Banach spaces. They also
provide flexible methods for analyzing integral operators. The subject
of wavelets promises to be a fruitful area of investigation for many years
to come.

Exercises
1. Go on the Internet and find two articles about the use of wavelets

in image processing. Describe briefly why wavelets give more effi-
cient image compression algorithms than do classical fast Fourier
transform techniques.

2. Repeat Exercise 1 for filtering of audio signals.

3. Refer to Appendix 12.3.1 for the concept of approximation in the
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Ll norm. Explain how to approximate the function

f(x)=x2+x+1

on the interval [0,11 in the L' norm, within an accuracy of 0.5, by
a linear combination of Haar basis elements.

4. Repeat Exercise 3 for the function f (x) = sin 7rx.

5. Explicitly write the first five basis elements of the vector space Vo
in Section 15.3. Sketch the graph of each one.

6. Explicitly write the first five basis elements of the vector space V1
in Section 15.3. Sketch the graph of each one.

7. Explicitly write the first five basis elements of the vector space Wo
in Section 15.3. Sketch the graph of each one.

8. Explicitly write the first five basis elements of the vector space W1
in Section 15.3. Sketch the graph of each one.

9. Verify that the Haar basis satisfies MRA1.

10. Verify that the Haar basis satisfies MRA2.

11. Verify that the Haar basis satisfies MRA3.

12. Verify that the Haar basis satisfies MRA4.

13. Verify that the Haar basis satisfies MRA5.

14. Calculate the first. six terms of the Haar basis expansion of the
function h(x) = [sinlrx] Xlo,1](x) on the entire real line.

15. Calculate the first six terms of the Haar basis expansion of the
function f (x) = x2 . X(o.11(x) on the entire real line.

16. What happens if we imitate the construction of the Haar basis,
but we begin instead with the function

= f 1/2 + x/2 if 0<x<1/2
W(x) 1 - x/2 if l/2 < x < 1 ?

Write out the first four basis elements of the resulting Vo. Sketch
the graph of each. Write out the first four basis elements of the
resulting V1. Sketch the graph of each.

17. Repeat Exercise 16 with the role of 0 played by ¢(x)
(sinx)/21 X[o,11(x).
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18. Write down a basis for the vector space Vt in the construction of
the Haar wavelets that is different from the basis provided in the
text. Infinitely many of your basis elements should be different
from the basis elements in the text.

19. Write down a basis for the vector space V2 in the construction of
the Haar wavelets that is different from the basis provided in the
text. Infinitely many of your basis elements should be different
from the basis elements in the text.

20. Calculate the first six terms of the Haar basis expansion of f (x) _
[ln(x+2)) X{o,i)(x). Sum those terms. Draw the graph of the sum,
and compare it to the graph of f.

21. Calculate the first six terms of the Haar basis expansion of f (x) _
ex - X10,11 (x). Sum those terms. Draw the graph of the sum, and
compare it to the graph of f.

22. Calculate the first six terms of the Haar basis expansion of f (x) _
sin x X(o,i](x). Sum those terms. Draw the graph of the sum, and
compare it to the graph of f.
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